
A Two-Layer Digital Twin for
Implementing Simultaneous Resilience
Strategies in Electronics Manufacturing

Phu Nguyen ∗ Dmitry Ivanov ∗

∗ Berlin School of Economics and Law, Badensche Str. 50, 10825
Berlin, Germany (e-mail: phu.nguyen@hwr-berlin.de,

dmitry.ivanov@hwr-berlin.de)

Abstract:
While most research tends to examine resilience capabilities through the lens of a single
strategy, supply chain management teams in practice often pursue integrated solutions that
combine multiple strategies to achieve desired levels of resilience. Our study introduces an
innovative two-layer digital supply chain twins (DSCTs) framework that connects the shop
floor layer with the broader supply chain network layer. The DSCTs facilitate the simultaneous
application of various resilience strategies. We then investigate the synergy of implementing six
resilience strategies, which encompass operational and strategic levels, across different stages
of disruption. The first four strategies are allocating available material inventory, activating
backup suppliers, and deploying flexible on-demand resources such as labor and transportation.
The other two strategies are strategic reserves for material substitution and repurposing.
Combining six strategies into a unified decision-making framework allows us to assess the
coevolution of decision processes and environmental conditions. Finally, we propose a set of
structured experiments to find the best combination of strategies across various disruption
profiles, considering supplier lead-time and supplier structural network characteristics. Our
results include a framework for combining resilience strategies and a method to identify the
best combination of such strategies—an essential component of any DSCTs solution.
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1. INTRODUCTION

As global supply chains confront increasing challenges
from natural disasters, geopolitical tensions, and tech-
nological transformation, resilience has become essential
to supply chain management. According to Dolgui et al.
(2018), supply chain resilience is the ability to withstand
disturbances, maintain acceptable levels of operation dur-
ing disruptions, and recover efficiently. Traditional risk
management strategies rely on predicting specific risks and
planning accordingly but often fall short of addressing un-
known uncertainties. As a result, there is a notable need to
shift towards innovative strategies to manage disruptions
better and promote adaptability (Cohen et al., 2022).

Although existing studies have explored various dimen-
sions of resilience, there is a lack of comprehensive frame-
works to apply combined resilience strategies (Alikhani
et al., 2023, 2025; Cohen et al., 2022). Ivanov (2024b)
conceptualizes the supply chain as an immune system,
advocating for combining strategies to adapt to changing
environments. Sheffi and Rice (2005) define eight stages of
a supply chain disruption: preparation, disruptive event
occurs, first response, initial impact, full impact time,
preparation for recovery, recovery, and long-term impact.
Alikhani et al. (2025) underscore the importance of ap-
plying multiple strategies but lack guidance in deploy-

ing resilience strategies considering disruption stages. Li
et al. (2023) and Kwaramba et al. (2024) propose the
applications of three resilience strategies (i.e., inventory,
backup capacity, and standby capability) corresponding to
the disruption stages. However, other actions to maintain
resilience could be proliferated.

Digital Supply Chain Twins (DSCTs) are virtual represen-
tations of physical supply chains (Guo and Mantravadi,
2024; Ivanov, 2023; Kritzinger et al., 2018; VanDerHorn
and Mahadevan, 2021). In practice, defining a physical
supply chain itself is challenging, as it involves the intri-
cate interplay of material, information, and financial flows
across multiple tiers (i.e., focal company, its customers,
and its suppliers). DSCTs leverage low-latency data to
support rapid and data-driven decision-making, enabling
stakeholders to identify bottlenecks, manage production
schedules, and enhance overall efficiency (Ivanov, 2023,
2024a). However, despite the potential of the technol-
ogy, research on integrated DSCTs remains scarce. There
is limited work on connecting shop floor activities with
broader supply chain processes to facilitate vertical and
horizontal decision-making.

Grounded in the interplay between resilience strategies
and the role of DSCTs in strengthening supply chain re-
silience, we aim to answer the following research question:



How can integrated DSCTs be modeled to fa-
cilitate the implementation of multiple resilience
strategies and achieve the desired level of resilience
performance?

We frame our study through the lens of the complex
adaptive system (CAS) approach and develop a digital-
twin-based simulation combining discrete-event simula-
tion (DES) and agent-based simulation (ABS) approaches
(Choi et al., 2001; Ivanov, 2023). While DES models the
supply chain, ABS captures interactions among key play-
ers (e.g., supply chain planners, managers, and suppliers).
Our approach also enables the emergence of agent behav-
iors over time (Choi et al., 2001).

The study employs data from an electronics company
comprising 19 products requiring 581 materials sourced
from 69 suppliers. Both qualitative and quantitative data
were collected within the framework of the ACCURATE
project (Accurate, 2024). Possible combinations of re-
silience strategies were defined and modeled based on
previous works (Alikhani et al., 2023, 2025; Cohen et al.,
2022; Ivanov, 2021, 2024b; Kwaramba et al., 2024). We
then propose an approach to address the research question
using structured experiments (Macdonald et al., 2018).

To reduce the experiment’s complexity, we propose to
categorize supplier nodes into groups that share similar
attributes based on network metrics. Within each category,
we select one material to represent the group, thereby
reducing the number of replications needed. In each ex-
periment, we remove several representative materials and
measure the total cost of resilience. The experiment is
replicated multiple times to collect resilience performance
across various combinations of strategies. Ultimately, we
collect data and identify the most effective combination of
resilience strategies.

Our study contributes in several ways. First, we propose an
architecture for digital-twin-based simulation that effec-
tively captures the emergence of supply chains and the in-
teraction between decisions and the evolving supply chain
environment. Our methodology illustrates supply chains
as complex systems on an industrial scale by leveraging
digital-twin technologies (Choi et al., 2001; Ivanov, 2023).
Second, we describe how to determine the best combina-
tion of supply chain resilience strategies. By employing
a structured experimental design to collect resilience cost
data and using statistical analysis, we propose how a com-
pany could identify the optimal combination of resilience
strategies.

The rest of our paper is organized as follows. In Part 2,
we discuss the background of our work, focusing on key
technological advancements in DSCTs and how different
resilience strategies work together. We describe our meth-
ods and experimental design in Part 3 and present the
initial results in Part 4. Finally, we conclude our study in
Part 5.

2. BACKGROUND

2.1 Combining supply chain resilience strategies

Resilience refers to the capability of a supply chain to
survive and recover from disruptions while achieving the

designed performance (Dolgui et al., 2018). Supply chains
are, in fact, CAS that continuously evolve to adapt to
external changes (Choi et al., 2001). Instead of limiting
the perspective to a closed system, Ivanov (2024c) pro-
pose viewing resilience from an open system perspective.
Resilience aims to recover (bounce back) to the designed
state and adapt (bounce forward) to achieve new states.
The open system perspective introduces the notion of
viability. Ivanov and Dolgui (2020) define viability as the
ability of a supply chain to maintain itself and survive
in a changing environment by redesigning structures and
replanning performance with long-term impacts.

Companies can deploy strategies such as intertwining,
scalability, substitution, and repurposing (Ivanov, 2021,
2024b) to foster resilience. Intertwining leverages cross-
sector or even competitor networks, while scalability refers
to the effective use of structural redundancies. Substi-
tution focuses on finding alternative solutions for mate-
rials or products (product-oriented strategies), whereas
repurposing involves utilizing fungible resources and re-
configuring processes (process-oriented strategies). While
most strategies emphasize preparedness, there is limited
research on reaction-based strategies, known as improvi-
sation tactics. These include expediting shipments, reallo-
cating resources, working overtime, and adapting planning
parameters (Dohmen et al., 2023; Richey et al., 2022).

An alternative approach to enhancing resilience is identify-
ing the challenges to resilience. Cohen et al. (2022) outline
eight supply chain attributes and propose three archetypes
of supply chain resilience: process complexity, partnership
complexity, and product complexity. However, organiza-
tions often face multiple complexities simultaneously. For
instance, a printed circuit board (PCB) assembler may
encounter thousands of product variations requiring strin-
gent assembly and testing processes, frequently utilizing
shared resources.

Adding more mud to the waters, Kwaramba et al. (2024)
describe how companies often utilize resilience resources
sequentially, aligning their deployment with the duration
of disruptions. Initially, growth and maintenance resources
address immediate needs, followed by on-demand flexibil-
ity for medium-term continuity and strategic reserves to
mitigate long-term consequences (Kwaramba et al., 2024).
In contrast, Ivanov (2024b) adopts an immune system
metaphor, suggesting resilience resources can be deployed
simultaneously to respond effectively to disturbances. Like
immune system functions, resilience strategies are catego-
rized into three types: innate, passive adaptive, and ac-
tive adaptive strategies (Ivanov, 2024b). Innate strategies
rely on existing measures such as structural redundancy,
process flexibility, and multiple sourcing to safeguard sup-
ply chain performance. Passive adaptive strategies involve
leveraging pre-existing resources and backup plans, such as
business continuity plans, to address known uncertainties.
In contrast, active adaptive strategies focus on dynamic
responses, such as expediting shipments, reallocating re-
sources, and implementing recovery policies.

Combining resilience strategies does not always yield pos-
itive outcomes regarding resilience performance (Kumar
and Park, 2019). Few studies have focused on investigating
the synergy of different resilience strategies. For instance,



Alikhani et al. (2023) examine using six resilience tactics in
a high-level retail network, including fortification, cyberse-
curity, direct shipping, safety stock, multiple set covering
(reassignment), and supply chain mapping. The authors
replace cybersecurity with collaboration in a subsequent
study by Alikhani et al. (2025). While both studies pro-
vide insights into determining the suitable set of resilience
strategies, there is limited information regarding the tim-
ing and execution of resilience strategies. It is important
to note that some mitigation strategies are only deployed
when previously implemented actions fail to adequately
address the consequences of disruptions (Kwaramba et al.,
2024). Additionally, the cost of executing specific actions
can depend on the stage of disruption and specific con-
straints. For example, expedited shipping is feasible only
when inventory is available in upstream echelons, and
expedited shipping is only necessary when the focal plant
has demand. Neglecting the timing for implementing re-
silience strategies in the model may overlook real-world
complexities. Therefore, we aim to bridge the mentioned
research gaps by detailing how resilience strategies are
deployed, considering the timing of six strategies in our
model.

2.2 Digital supply chain twin

Digital twins represent virtual replicas of physical sys-
tems that dynamically mirror real-time behavior, en-
abling continuous synchronization and bidirectional inter-
actions between the physical and digital domains (Guo and
Mantravadi, 2024; Ivanov, 2023, 2024a; Kritzinger et al.,
2018; VanDerHorn and Mahadevan, 2021). Unlike digital
shadows, which passively collect and display data, digi-
tal twins actively simulate, predict, and optimize system
performance, providing advanced decision-making support
(Ivanov, 2023, 2024a; Kritzinger et al., 2018). DSCTs
expand the digital twins concept in supply chains by in-
tegrating operational, logistical, and strategic dimensions
into a unified solution. The integration of smart agents
further enhances DSCTs capabilities.

DSCTs are powerful decision-support tools, combining
real-time data, predictive analytics, and simulation to
stress-test supply chain resilience, viability, and perfor-
mance (Ivanov, 2023; Stadtfeld et al., 2024). By incor-
porating modeling approaches such as agent-based and
discrete-event simulations, DSCTs enable stakeholders
to evaluate scenarios like reallocating resources or op-
timizing inventory under dynamic conditions (Guo and
Mantravadi, 2024; Ivanov, 2023, 2024a). The decision-
making process supported by DSCTs benefits from low
data latency and ensures rapid and informed responses to
emerging challenges. For instance, DSCTs facilitate the
identification of bottlenecks or disruptions and recom-
mend actionable measures, such as adjusting production
schedules or reallocating available resources (Ivanov, 2023,
2024a).

Moreover, DSCTs allow researchers to investigate the sup-
ply chain as a CAS through the seamless connection be-
tween simulation and optimization models (see Figure 1).
DES simulation represents the supply chain system, while
purposeful agents with optimization models encapsulate
how decisions are made. The most important thing is that

Fig. 1. Illustration of the interaction between simulation
and optimization in DSCTs.

after decisions are made, the supply chain system and its
environment are also updated (Choi et al., 2001; Ivanov,
2023). Therefore, we can leverage technology to investigate
the coevolution of the supply chain and the choice of
resilience strategies, which is also a contribution of our
study. The synergy of various resilience strategies high-
lights the transformative potential of DSCTs in fostering
adaptability and viability.

Our approach offers greater flexibility compared to the
more structured nature of the sequential modeling ap-
proach. While sequential decision analysis addresses ef-
fectively structured decisions, our DSCT-based approach
using ABS can support less structured problems. The flex-
ibility enables us to explore interactions between human
decision-makers and decision support systems, a signifi-
cant value of DSCTs (Ivanov, 2023). By leveraging CAS,
DSCTs effectively capture the dynamic nature of supply
chains and their ever-changing constraints. Additionally,
DSCTs could be highly customized, allowing businesses to
tailor key performance indicators—such as lost sales—to
fit firm-specific needs.

3. METHOD AND EXPERIMENT DESIGN

3.1 Digital-twin based simulation

Our DSCT solution integrates several key components to
simulate and optimize supply chain processes (see Figure
2). Input data comprises supply chain operations, shop
floor activities, data integration, and transformation. The
simulation module, which is the core of the DSCTs, pro-
cesses input data to replicate the behavior of the supply
chain under different scenarios. A vital feature of the
DSCTs is the interaction between the simulation mod-
ule and the decision-making support modules. While the
simulation module generates output, the decision-making
support modules leverage that output to inform decisions,
such as inventory management or resource allocation. The
user interface module allows users to access the simu-
lation results, making complex results more transparent
and explainable. The solution enables dynamic, near-real-
time analysis and decision-making, improving supply chain
resilience and efficiency.

From the perspective of CAS, we view DSCTs as an
advanced technology that integrates high-granularity sim-
ulation with decision-making processes. CAS approach en-
ables the coevolution of decisions (strategies) and the en-



Fig. 2. High-level architecture of our DSCTs solution
(Accurate, 2024).

vironment (modeled supply chain), illustrating how strate-
gies evolve and adapt in response to changing conditions.
The feedback loops between agents and their environment
provide insights into the dynamic behaviors of supply
chains, which traditional models fail to capture Choi et al.
(2001). By simulating the complex interactions, DSCTs
offer an understanding of how strategic decisions and en-
vironmental factors co-evolve. The technology allows us to
collect data on resilience performance and find the optimal
combination of resilience strategies.

3.2 Integrated resilience strategies

To develop the pool of resilience strategies, we employ
three agents representing three typical decision-makers
in the supply chain: supply chain planner, supply chain
manager, and senior manager.

Agent 1 captures how a supply chain planner utilizes
growth and maintenance resources to mitigate material
shortages. Our study considers two primary resilience
resources: available inventory (A1) and backup suppliers
(A2). The resilience strategy for Agent 1 aims to maximize
the total supply of products (Qp

t ) while ensuring that the
supply constraints are met. The objective function is as
follows:

max
∑
p∈P

Qp
t · πp (Strategy A1)

s.t.
∑
p∈P

Qp
t · rp,m ≤ Imt , ∀m ∈ M

Qp
t ≤ Op

t , ∀p ∈ P

Qp
t ∈ N0 , ∀p ∈ P

where Qp
t represents the quantity of product p at time

t, and πp is the profit associated with product p. The
constraints ensure that the quantities produced (Qp

t ) do
not exceed the available material inventory (Imt ) and that
orders (Qp

t ) cannot exceed the operational capacity (Op
t ).

γm,s
t =

γm,s +

∑
s∈S− γm,s

|S+|
if s ∈ S+ (Strategy A2)

0, if s ∈ S−

where γm,s
t represents the percentage of the total volume

of m sourced from supplier s at time t. S− is the set of
disrupted qualified suppliers for material m, while S+ is
the set of available suppliers for material m.

For Agent 2, we model actions that a supply chain man-
ager may implement to increase short-term capacity (A3)
or expedite material deliveries (A4). Short-term capacity
can be increased by paying overtime costs to increase
labor. The objective function of Strategy 3 is to minimize
the gap between demand and operational capacity.

min
∑
p∈P

(Dp
t −Op + opt ) ∗ πp + Cp

t (Strategy A3)

s.t. Op
t ≤ Dp

t , ∀p ∈ P

opt ∈ R+ , ∀p ∈ P

where Dp
t is the demand for the product p at time t, and

Cp
t represents the cost incurred in fulfilling corresponding

demand. The decision variable opt represents the additional
short-term capacity gain.

In strategy 4, the supply chain manager pays more money
(Cm) to expedite the material shipping and increase
available material for production.

max
∑

m∈M−

Imt + Imt− (Strategy A4)

s.t.
∑

m∈M−

Cm
t ≤ WT

where Imt− is the quantity of material m in transit, and WT

represents the maximum budget for expediting.

Agent 3 models how the management team deploys
strategic reserves to address disruptions. This strategy in-
volves increasing operational capacity (Op

t ) and inventory
(Imt ) to mitigate disruptions (see Equation A5 and A6).

Op
t = Op +Op∗ (Strategy A5)

Imt = Imt + Im∗
t (Strategy A6)

where Op∗ and Im∗ represent the additional operational
capacity and inventory that are added to address the
disruption. The overall cost of implementing six resilience
strategies is measured by the following key performance
indicator:

C = LS + Cp + Ch + CT + CA5 + CA6

where LS refers to lost sales, and the terms Cp, Ch, CT ,
CA5, and CA6 correspond to the costs associated with each
strategy.

3.3 Structured experiment design

To evaluate the effectiveness of different resilience strategy
deployment approaches, we design a structured experimen-
tal setup based on structured experiments (Macdonald



Fig. 3. Results of the baseline model.

et al., 2018). The disruption profile includes three key
parameters: disruption nodes, disruption start time, and
disruption duration. For disruption nodes, we systemat-
ically remove individual supplier nodes from the supply
chain network—the choice for the node to be removed
or the target node is made using network analysis. Po-
tential network metrics include degree-, betweenness-, and
eigenvector-centrality (Brintrup et al., 2016). The disrup-
tion start time is varied across three discrete weeks, and
the disruption duration spans three levels: low-, medium-,
and high-severity (Alikhani et al., 2025).

In each experiment, we also need to define the disruption
stages (Sheffi and Rice, 2005) and the timing to apply six
resilience strategies. In essence, we follow seminal works
of Kwaramba et al. (2024) and Li et al. (2023). First,
Agent 1’s strategies are implemented immediately after
the disruption, followed by Agent 2’s strategies if Agent 1’s
actions do not sufficiently mitigate the disruption. Finally,
Agent 3’s strategies are applied if the previous strategies
are still insufficient. The approach allows us to compare
the cost-effectiveness of combined strategies deployment
under varying disruption scenarios.

4. RESULTS

The current result of our project is to model the two-
layer supply chain system and integrate six resilience
strategies. The baseline model provides a foundational
understanding of supply chain performance under normal
operating conditions. Figure 3 compares the delivered
volume and demand over time. Initially, the supply chain
exhibits fluctuations in meeting demand due to typical
lead-time variations and customer demand signals. As
the system stabilizes, the fill rate is marching toward
94%, demonstrating the supply network’s ability to sustain
performance.

Additionally, we observe significant variance in demand
patterns over time, which may stem from the order batch-
ing effect—a common phenomenon in supply chains when
customers apply periodic ordering policies. This effect can
increase volatility in production scheduling, inventory lev-
els, and transportation planning.

The baseline assessment, our current result, serves as a
benchmark against which disruption scenarios and re-
silience strategies are evaluated. It allows us to measure
deviations in key performance indicators such as lost sales.
To continue our project, we will collect experiment results
and performance analysis and provide insights on the com-
bination of resilience strategies.

5. CONCLUSION

Our research introduces a two-layer DSCTs solution to
strengthen supply chain resilience by integrating the shop
floor layer with the supply network level. The proposed
approach supports the simultaneous application of mul-
tiple resilience strategies, offering an adaptive mechanism
to navigate disruptions. We expect to provide a framework
that guides supply chain management teams on how and
when to deploy combined resilience strategies to achieve
the desired level of resilience.

As a next step, we plan to conduct structured experi-
ments to continue investigating the research question. To
measure key resilience performance metrics, we simulate
various disruption scenarios with varying target nodes,
disruption start times, and durations. Insights gained from
these experiments will refine the DSCTs framework and
guide the development of best practices for deploying re-
silience strategies.

This study has three major limitations. First, we consider
six resilience strategies across three decision-making lev-
els. We acknowledge that supply chain practitioners may
implement additional strategies beyond those examined in



this study. Second, while integrating the shop floor and
supply chain levels into a DSCT solution, we simplify many
supply chain processes and focus primarily on bottleneck
operations. Lastly, the timing of resilience strategy im-
plementation requires further investigation. We plan to
apply a uniform timeline across all experiments to ensure
a consistent comparison between approaches. However, a
more detailed sensitivity analysis is needed to assess the
impact of implementation timing.

Future research can expand the scope of our study by
exploring the applicability of DSCTs across different in-
dustries and broadening the range of resilience strategies.
Investigating additional decision-making levels, implemen-
tation timelines, and industry-specific constraints could
provide deeper insights into enhancing supply chain re-
silience. Moreover, integrating more sophisticated supply
chain processes and real-time data analytics could further
advance the implementation of resilience measures.

6. ACKNOWLEDGEMENTS

The present work was conducted in the framework of
the project ACCURATE (project ID: 101138269), sup-
ported by the Horizon Europe Framework Programme, un-
der grant agreement number 101138269, HORIZON-CL4-
2023-TWIN-TRANSITION-01-07. This research was also
supported by INTPART project “Sustainable Logistics of
the Future” - Norges forskningsr̊ad 309528.

REFERENCES

Accurate (2024). Accurate project - advancing re-
silience and accuracy in digital supply chains. URL
https://accurateproject.eu/. Accessed: 2024-12-04.

Alikhani, R., Ranjbar, A., Jamali, A., Torabi, S.A., and
Zobel, C.W. (2023). Towards increasing synergistic
effects of resilience strategies in supply chain network
design. Omega, 116, 102819.

Alikhani, R., Ranjbar, A., Torabi, S.A., and Zobel, C.W.
(2025). Performance evaluation of concurrent supply
chain resilience strategies. International Journal of
Production Economics, 279, 109446.

Brintrup, A., Ledwoch, A., and Barros, J. (2016). Topo-
logical robustness of the global automotive industry.
Logistics Research, 9, 1–17.

Choi, T.Y., Dooley, K.J., and Rungtusanatham, M.
(2001). Supply networks and complex adaptive systems:
control versus emergence. Journal of Operations Man-
agement, 19(3), 351–366.

Cohen, M., Cui, S., Doetsch, S., Ernst, R., Huchzermeier,
A., Kouvelis, P., Lee, H., Matsuo, H., and Tsay, A.A.
(2022). Bespoke supply-chain resilience: the gap be-
tween theory and practice. Journal of Operations Man-
agement, 68(5), 515–531.

Dohmen, A.E., Merrick, J.R., Saunders, L.W., Stank,
T.P., and Goldsby, T.J. (2023). When preemptive risk
mitigation is insufficient: The effectiveness of continuity
and resilience techniques during covid-19. Production
and Operations Management, 32(5), 1529–1549.

Dolgui, A., Ivanov, D., and Sokolov, B. (2018). Ripple
effect in the supply chain: an analysis and recent lit-
erature. International Journal of Production Research,
56(1-2), 414–430.

Guo, D. and Mantravadi, S. (2024). The role of digital
twins in lean supply chain management: review and
research directions. International Journal of Production
Research, 1–22.

Ivanov, D. (2021). Supply chain viability and the covid-
19 pandemic: a conceptual and formal generalisation of
four major adaptation strategies. International Journal
of Production Research, 59(12), 3535–3552.

Ivanov, D. (2023). Intelligent digital twin (idt) for supply
chain stress-testing, resilience, and viability. Interna-
tional Journal of Production Economics, 263, 108938.

Ivanov, D. (2024a). Conceptualisation of a 7-element
digital twin framework in supply chain and operations
management. International Journal of Production Re-
search, 62(6), 2220–2232.

Ivanov, D. (2024b). Supply chain resilience: Conceptual
and formal models drawing from immune system anal-
ogy. Omega, 127, 103081.

Ivanov, D. (2024c). Two views of supply chain resilience.
International Journal of Production Research, 62(11),
4031–4045.

Ivanov, D. and Dolgui, A. (2020). Viability of intertwined
supply networks: extending the supply chain resilience
angles towards survivability. a position paper motivated
by covid-19 outbreak. International Journal of Produc-
tion Research, 58(10), 2904–2915.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., and
Sihn, W. (2018). Digital twin in manufacturing: A
categorical literature review and classification. IFAC-
PapersOnLine, 51(11), 1016–1022.

Kumar, R.L. and Park, S. (2019). A portfolio approach
to supply chain risk management. Decision Sciences,
50(2), 210–244.

Kwaramba, C.S., Goldstein, S.M., Lowry, P.B., Notting-
ham, Q.J., and Cooper, E.F. (2024). Supply chain
resilience as endotherm resilience: Theorizing through
metaphorical transfer. Production and Operations Man-
agement, 33(2), 456–474.

Li, M.K., Sodhi, M.S., Tang, C.S., and Yu, J.J. (2023).
Preparedness with a system integrating inventory, ca-
pacity, and capability for future pandemics and other
disasters. Production and Operations Management,
32(2), 564–583.

Macdonald, J.R., Zobel, C.W., Melnyk, S.A., and Griffis,
S.E. (2018). Supply chain risk and resilience: theory
building through structured experiments and simula-
tion. International Journal of Production Research,
56(12), 4337–4355.

Richey, R.G., Roath, A.S., Adams, F.G., and Wieland,
A. (2022). A responsiveness view of logistics and supply
chain management. Journal of Business Logistics, 43(1),
62–91.

Sheffi, Y. and Rice, Jr, J.B. (2005). A supply chain view of
the resilient enterprise. MIT Sloan management review.

Stadtfeld, G.M., Lienemann, R., and Gruchmann, T.
(2024). An analysis of digital twin technologies en-
hancing supply chain viability: empirical evidence from
multiple cases. Production Planning & Control, 0(0),
1–17.

VanDerHorn, E. and Mahadevan, S. (2021). Digital twin:
Generalization, characterization and implementation.
Decision Support Systems, 145, 113524.


