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Public summary
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support in a Manufacturing-as-a-Service (MaaS) context.
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under disruption in MaaS environments, together with a report that provides practical guidelines on the
application of the digital twin-based DSS.
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Chapter 1

Introduction

1.1 About this deliverable

This deliverable presents the development of a Decision Support System (DSS) for designing and
managing resilient supply chains in a Manufacturing-as-a-Service (MaaS) context. The proposed DSS
framework supports strategic and tactical supply chain decisions under conditions of uncertainty. It
includes methodologies for modeling supply chain disruptions, evaluating resilience strategies, and
optimizing performance through adaptive reconfiguration of networks. The deliverable also includes
detailed guidelines for deploying and using the DSS effectively across a wide range of operational
contexts, ensuring alignment with industry standards and resilience best practices.

The DSS integrates predictive analytics, simulation, optimization, and digital twin technolo-
gies to support manufacturers in coping with uncertainty and disruption while dynamically allocating
procurement, production, and distribution paths after customer orders are received.

Together, these chapters provide a methodological and technological foundation for stress-testing,
planning, and re-designing supply chains in MaaS environments. The deliverable reports on require-
ments, data collection, architectures, solution approaches, and first implementations, paving the way for
advanced resilience analysis and decision support in subsequent project phases.

1.2 Structure of the document

This document is structured into five main chapters to provide both methodologies and practical imple-
mentation guidance for the supply chain resilience design while leveraging the concept of MaaS and
digitalization:

• Chapter 2 introduces the conceptual framework of the digital twin–based decision support system,
outlining its role within MaaS supply chain management and clarifying key concepts.

• Chapter 3 presents the core methodologies and algorithms, covering network design, planning
approaches in MaaS ecosystems (including information, capacity, and material flows, as well as
pricing aspects), and stress-testing models for disruption management.

• Chapter 4 provides user guidelines for the decision-support system, including data requirements,
system setup, operational modes, and interpretation of results.

• Chapter 5 concludes with a synthesis of findings, managerial implications, and directions for future
research.

• Appendices are provided to detail the mathematical formulations, pseudo-codes, and additional
technical material supporting the main text.

2



CHAPTER 1. INTRODUCTION 3

1.3 Relation with other tasks and deliverables

Building on Deliverable 4.1, which introduced the simulation and optimization modeling approach for
supply chain management and stress testing, Deliverable 4.2 represents a pivotal milestone at M22.
It consolidates the conceptual and methodological advances into a coherent Decision-Support System
(DSS) framework, thereby establishing the foundation for subsequent demonstrators and the integration
of MaaS solutions, in close alignment with the activities of WP2 (ontologies and machmaking), WP3
(shop-floor level), WP5 (data spaces), and WP6 (decision-support and MaaS framework).

At the supply chain level, Deliverable 4.2 builds directly upon the outcomes of Deliverable 3.1 and
Deliverable 3.2 (WP3), which address developments at the shop-floor level (see Figure 1.1).

Figure 1.1: Decision-support framework: Core building blocks

Furthermore, the interrelation between the results presented in this deliverable and the use cases
reported in Deliverable 7.1 is explicitly addressed, ensuring consistency and cross-fertilisation across
work packages. The proposed methodologies have been systematically validated through the use cases
co-designed with the ACCURATE pilots and partners in WP7. This validation process ensured not only
their technical soundness but also their practical applicability in real industrial contexts. The industrial
relevance and implications of these results are summarized in the dedicated box below.

Industrial implications: The case of ACCURATE pilots

By M22, several publications and dissemination actions related to the contributions of Deliverable 4.2
had been completed, thereby supporting the overall dissemination and exploitation objectives of WP8.



Chapter 2

Conceptual framework of the digital
twin-based decision support system
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CHAPTER 2. CONCEPTUAL FRAMEWORK OF THE DIGITAL TWIN-BASED DECISION SUPPORT SYSTEM5

2.1 Digital twin-based decision-support system

As highlighted in Deliverable 2.2, the digital twin registry represents the backbone framework managing
and orchestrating different models and digital twins that ensure finding the optimal Manufacturing Service
or even optimizing the interaction along the value chain. Consequently, digital twins are examined from
multiple perspectives throughout the ACCURATE deliverables. In line with the scope of the present
document, our focus is placed on the algorithmic perspective.

As illustrated in Figures 2.1-2.3, three complementary modes of interaction between simulation and
optimization, each representing a progressively more advanced stage towards a simulation-based digital
twin for decision support, are explicitly leveraged to design algorithms for supply chain design, planning,
and stress-testing.

• [Optimized Global System] – Optimized Simulation Settings: (see e.g.,Chapter 3.3) In this
mode, optimization is used before simulation to identify the best configuration of simulation
parameters (e.g., policies, resource allocations, scheduling rules). Simulation then evaluates the
system behavior under these optimized settings. The outcome is an optimized global system
configuration that guides scenario analysis and policy testing. Within a DT-DSS, this corresponds
to calibrating the twin with optimized baseline settings before exploring alternative scenarios.

Figure 2.1: Optimized Global System: Optimized Simulation Settings (Borodin, Bourtembourg, et al.
2019)

• [Well-informed Optimization] – Simulation for Supporting Optimization: (see e.g., Chap-
ter 3.3) Here, the focus shifts: simulation is embedded within the optimization loop. Candidate
solutions generated by optimization are fed into simulation to assess their feasibility and perfor-
mance under realistic, dynamic conditions. The feedback loop improves the quality of optimization
by providing performance estimations and system responses grounded in simulation outcomes. In
a DT-DSS, this enables robust decision-making by ensuring that optimization results are validated
against realistic, scenario-based dynamics.

• [Towards Digital Twin] – Simulation and Context-Based Optimization: (see Chapter 3.2 and
the developed Supply Chain Network Analysis Tool) This is the most advanced mode, where
simulation and optimization operate in a continuous, context-aware loop. The system dynamically
integrates real-time or near-real-time data, allowing the optimization module to adapt decision rules
to evolving conditions. Simulation provides contextual performance insights, while optimization
generates responses or adaptive decision rules accordingly. This corresponds to the digital twin
paradigm: a living system where simulation and optimization jointly support operational and
tactical decision-making under uncertainty.

The first mode provides offline support by calibrating baseline settings. The second mode enhances
planning and design by ensuring that optimization solutions remain valid under dynamic, stochastic
conditions. The third mode embodies the vision of a true DT: a continuously updated, simulation-driven
environment that supports real-time decision support across supply chain and manufacturing contexts.
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Figure 2.2: Simulation for Supporting Optimization (Borodin, Bourtembourg, et al. 2019)

Figure 2.3: Towards Digital Twin (Borodin, Bourtembourg, et al. 2019)

Together, these modes describe an evolutionary pathway for integrating simulation and optimization
into a Digital Twin-based Decision Support System (DT-based DSS), moving from static optimization,
through simulation-validated optimization, towards fully dynamic, adaptive, and context-aware decision
support.

2.2 Overview of decision support system in MaaS supply chain manage-
ment

While effective, the classical approach to supply chain resilience has limitations, particularly in a rapidly
changing global environment:

• Slower Response Times: Traditional methods, such as manual planning, do not offer the same
speed of response as digital systems, making it harder to adjust quickly to disruptions as they
unfold.

• Increased Costs: Buffer inventories and multiple suppliers can increase operational costs, as
businesses need to maintain additional stock and manage relationships with several suppliers,
often leading to inefficiencies.

• Limited Predictive Power: The classical approach often relies on historical data and static models,
which may not fully capture the complexity of modern supply chains or anticipate emerging risks.

• Manual Decision-Making: The reliance on human judgment for contingency plans and com-
munication can lead to delays and errors, particularly when dealing with complex disruptions or
coordinating across multiple supply chain nodes.

Manufacturing-as-a-Service (MaaS) is an emerging, flexible, and technology-driven approach to
manufacturing that integrates on-demand, decentralized, and scalable production capabilities. It allows
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businesses to outsource manufacturing functions to third-party providers or networks of providers that
offer customizable and agile production services. MaaS is a key component in enhancing supply
chain resilience by enabling companies to adapt quickly to changing demands, market conditions, and
unexpected disruptions.

Unlike traditional manufacturing methods, which rely on fixed production facilities and long-term
contracts, MaaS offers a more flexible and responsive model. It leverages cloud-based platforms, digital
twins, and smart manufacturing technologies to optimize production and distribution processes. This
approach is highly effective for mitigating risks, responding to supply chain disruptions, and maintaining
operational continuity.

Based on related literature summarized in Table 2.2 and finding from other EU-related projects3, key
components of the MaaS-based manufacturing resilience strategy include:

• On-Demand Manufacturing: MaaS allows businesses to access manufacturing services on-
demand, meaning they can scale up or down based on real-time demand without the need to
invest in costly, fixed production assets. This on-demand model helps mitigate risks such as
demand fluctuations, supply shortages, or production bottlenecks by enabling quick adjustments
to production capacity. Companies can efficiently meet customer needs without the burden of
maintaining large, in-house manufacturing infrastructures.

• Decentralized Production Network: A core principle of MaaS is the use of a decentralized man-
ufacturing network where companies can select from a range of suppliers, contract manufacturers,
or fabrication networks. By connecting to this network through a digital platform, businesses can
access various production capabilities based on specific needs, whether it is 3D printing, injection
molding, or CNC machining. The decentralization reduces reliance on a single source, thereby
increasing resilience against localized disruptions like factory closures, labor shortages, or supply
interruptions.

• Real-time Monitoring: Digital twin technology, an integral part of MaaS, enables the virtual
representation of physical manufacturing assets, production lines, and processes. With real-time
data collection, companies can simulate, monitor, and optimize their manufacturing processes
virtually, allowing for predictive maintenance, quality assurance, and immediate adjustments to
production plans. This capability enhances the flexibility of the manufacturing process, enabling
quick responses to issues and optimizing production without interrupting physical operations.

• Customization: The MaaS approach allows businesses to offer highly customized products by
enabling flexible production schedules and processes. Manufacturers in the MaaS ecosystem can
quickly adapt to customer specifications and unique product requirements without lengthy setup
times or large-scale changes. This ability to rapidly switch between different product configurations
makes the supply chain more agile and resilient to shifts in market demand.

• Scalability and Flexibility: MaaS provides scalability by allowing companies to increase or de-
crease production levels as needed without major capital investment. This scalability is particularly
useful in handling unexpected spikes in demand or supply chain disruptions. For example, during
a sudden surge in demand, companies can quickly increase production by tapping into additional
capacity from the MaaS network, rather than waiting for in-house resources to be expanded.
This flexibility helps ensure that supply chain operations remain smooth, even under unforeseen
circumstances.

• Integration with Supply Chain Systems: MaaS platforms typically integrate seamlessly with ex-
isting supply chain management systems, such as Enterprise Resource Planning (ERP), warehouse
management systems (WMS), and Transportation Management Systems (TMS). This integration
ensures that production schedules are aligned with supply chain activities, enhancing overall coor-
dination and visibility. Real-time data sharing between manufacturers and supply chain partners
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also ensures that production adjustments are communicated quickly and effectively, reducing delays
and bottlenecks.

• Resource Optimization and Cost Efficiency: By using MaaS, businesses can optimize the use
of manufacturing resources such as labor, equipment, and raw materials. MaaS platforms often
use data analytics to predict resource needs, minimize waste, and optimize production cycles,
ultimately reducing costs. The ability to scale production and access specialized capabilities on-
demand also ensures that businesses only pay for what they need, avoiding the fixed overhead costs
of traditional manufacturing facilities.

• Supply Chain Resilience Through Redundancy: The decentralized nature of MaaS enhances
supply chain resilience by providing built-in redundancy. Since companies can access a range of
manufacturing services and locations, they can quickly shift production to alternative facilities or
providers in the event of a disruption. For instance, if one manufacturing partner faces a production
delay or shutdown, the system can automatically reroute production to another provider without
significantly affecting the overall supply chain.

• Sustainability Considerations: MaaS can also support sustainability initiatives by enabling more
efficient production processes, reducing waste, and minimizing energy consumption. With the
ability to select manufacturers based on environmental performance, businesses can promote
sustainable practices within their supply chains. Additionally, MaaS platforms can optimize
transportation and logistics, further reducing environmental impact by minimizing unnecessary
shipments and utilizing eco-friendly transportation options.

As summarized in Table 2.2, the MaaS literature spans a wide range of domains, methodologies,
and contributions to operations management. Early studies (e.g.,Boccalatte et al. 2004; W. Shen et
al. 2006) laid the foundations for distributed and agent-based decision-making, while more recent
works have increasingly focused on explicit MaaS formulations, including bilevel and multi-objective
optimization for scheduling (Chen, Feng, et al. 2024; Chen, X. Gong, et al. 2021; C. Duran-Mateluna et al.
2025), game-theoretic approaches to platform pricing (Chaudhuri et al. 2021; Chen, Feng, et al. 2024),
and sector-specific applications such as additive manufacturing (see e.g., the MASTT2040 project3).
Complementary bibliometric and conceptual reviews (Karamanli et al. 2025; E. O. Oyetunji, Abagun,
and E. A. Oyetunji 2025) provide a comprehensive overview of the research landscape, highlighting the
challenges of adoption.

Taken together, these studies illustrate a clear trajectory: from theoretical and agent-based ex-
plorations of distributed manufacturing towards integrated, optimization-driven models that address
scheduling, coordination, and sustainability in MaaS contexts. Deliverable 4.2 positions itself within
this trajectory by extending these methodological advances into a simulation-based DT DSS frame-
work for supply chain design, planning, and resilience assessment.
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Table 2.1: Summary of a collection of MaaS-related literature and related operations management research.

Authors (Year) Domain / Focus Methodology Contribution to Operations Management Relevance to MaaS
Karamanli et al. 2025 MaaS – Literature

Review
Bibliometric and sys-
tematic review

Mapped MaaS research landscape; taxon-
omy of studies (theoretical, architectural, data-
driven); identified gaps in scheduling and inte-
gration

Comprehensive overview of
MaaS

Ege Duran and O’Sullivan
2024

Shared Manufactur-
ing / MaaS Planning

Comparative analysis
of paradigms

Defined shared manufacturing characteristics;
surveyed planning & scheduling methods;
highlighted need for stakeholder coordination

Focuses on shared/MaaS
scheduling

Boccalatte et al. 2004 Agile Manufactur-
ing Scheduling

Multi-agent system;
Contract Net protocol

Introduced agent-based negotiation for tasks;
improved just in time reactivity vs. static
scheduling

Foundation for distributed
decision-making in MaaS

W. Shen et al. 2006 Intelligent Manu-
facturing Systems

Agent-based frame-
works

Showed resilience and flexibility via decen-
tralized control; proposed holonic/heterarchi-
cal architectures

Viability of decentralized
control for MaaS

Chaudhuri et al. 2021 MaaS Platform
Pricing

Game-theoretic Stack-
elberg model

Developed optimal dynamic pricing for dual-
channel supply chain; showed impact on sus-
tainability

Explicit MaaS pricing strat-
egy

Chen, X. Gong, et al. 2021 Real-Time Schedul-
ing – Flow Shop

Bilevel Stackelberg
optimization; Tabu
search

Proposed interactive order acceptance and
scheduling model; demonstrated revenue gains
and responsiveness

Real-time dynamic schedul-
ing relevant to MaaS

Chen, Feng, et al. 2024 Task–Service
Matching in MaaS

Bilevel multi-objective
optimization; nested
algorithm

Integrated platform allocation with provider
scheduling; improved global efficiency and
revenue

Formal MaaS coordination
model

Kang, Tan, and Zhong 2023 Cloud 3D Printing
Services

Mixed integer pro-
gramming, heuristic,
simulation

Optimized allocation in distributed additive
manufacturing; reduced lead times, improved
utilization

Practical MaaS application
in 3D printing

E. O. Oyetunji, Abagun, and
E. A. Oyetunji 2025

Shared Manufactur-
ing – Benefits

Conceptual classifica-
tion study

Identified major benefit areas (cost, utilization,
SME support); Slow adoption

Explains value proposition
of MaaS adoption

ACCURATE Shared Manufactur-
ing, MaaS Schedul-
ing/Pricing

Mixed integer pro-
gramming, constraint
programming, heuris-
tics, metaheuristics

Tackled multi-agent scheduling with multiple
objectives (tardiness vs. makespan); coordi-
nated trade-offs effectively; pricing

MaaS scheduling and pric-
ing
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2.3 Key concepts

Manufacturing-as-a-Service

Definition 2.3.1 (Schuseil et al. 2024, the European Commission2). MaaS represents a service-based
manufacturing concept that is enabled by cloud manufacturing and managed in a centralized way for
responsive, flexible, and scalable manufacturing industries.

Supply chain management

Definition 2.3.2 (Council of Supply Chain Management Professionals (CSCMP) 2013). Supply chain
management encompasses the planning and management of all activities involved in sourcing and
procurement, conversion, and logistics management. Importantly, it also involves coordination and
collaboration with channel partners, including suppliers, intermediaries, third-party service providers,
and customers.

Resilience

It is worthwhile to mention that we conceptualize resilience as a multifaceted construct, with recent
literature highlighting two complementary views of resilience (Ivanov 2024b):

• Resilience as a Process Quality: This aspect characterizes the inherent ability of a supply chain
”to adapt, survive, and exist” amid changing conditions. In other words, resilience is the built-in
flexibility and robustness of the system, analogous to an immune system that continuously monitors
and adjusts to threats. Ivanov 2024b often compares supply chain resilience to a human immune
system that can anticipate and adapt to environmental changes, enabling the organization to absorb
shocks before they escalate.

• Resilience as a Performance Outcome: In parallel, Ivanov 2024b defines resilience in terms of
measurable outcomes. Specifically, the performance deviation and recovery following a disruption.
As he notes, resilience can be quantified by ”performance deviations caused by disruptions and
recovery actions”.

A supply chain’s resilience can thus be evaluated by how much performance drops during a crisis and
how quickly (and effectively) it bounces back to acceptable levels. By combining these views, we frame
resilience both as (i) a capability (process quality), i.e., the readiness and adaptability of the network, (ii)
and as a result (performance outcome), i.e., the actual stability of service levels in the face of shocks.
This dual perspective is central to our contributions on supply chain dynamics.

Disruptions and disruptions

Definition 2.3.3 (Kanike 2023; Gyngyi Kovcs 2020 ). Disruption refers to a significant unexpected event
that interrupts the normal flow or functioning of a system, such as a supply chain, causing a breakdown
in processes or severe delays.

Disruptions tend to be more abrupt, large-scale, and impactful, often requiring active management
measures to restore normalcy and mitigate adverse effects. For example, supply chain disruptions can
arise from sudden events, such as natural disasters, pandemics, or political crises, that halt production
lines or block transportation routes, causing ripple effects throughout the entire supply chain network.

Definition 2.3.4 (Helmut Hillebrand 2020; Peters et al. 2011). Disturbance carries a broader operational
connotation, referring to events or changes that interfere with the system’s normal state but may not
necessarily cause a complete breakdown or require immediate intervention.
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Disturbances can be smaller scale, more frequent, or gradual changes that shift system dynamics
and require the system to adapt or recover over time. In operational systems, disturbances can include
minor fluctuations or noise that degrade performance but might be corrected through control mechanisms
without a full-scale disruption (Yang et al. 2016).

From an engineering or control systems perspective, disturbances can be continuous or stochastic
inputs (such as sensor noise, environmental fluctuations) affecting system stability, whereas disruptions
represent larger-scale failures or breakdowns in the system components.

In practical supply chain contexts, the distinction entails that:

• Disruptions are major events causing stoppages or failures requiring disruption management—models
and strategies to recover and realign supply chain processes to resume normal operations.

• Disturbances represent perturbations or deviations from normal operations that might be manage-
able through routine adjustments or resilience capabilities without halting the system.

To summarize the key differences:

• Magnitude: Disruptions are generally more severe and impactful than disturbances.

• Duration: Disruptions cause immediate and often prolonged interruptions; disturbances may be
transient or less impactful.

• Management response (or control strategies): Disruptions require active disruption management
and recovery plans; disturbances may be absorbed or mitigated through system resilience or control.

• Scope: Disruptions often cascade through interconnected systems, causing large-scale effects;
disturbances might be localized or have limited propagation.



Chapter 3
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3.1 Introduction

As described in Deliverable 7.1, Manufacturing-as-a-Service (MaaS) envisions a network of manufac-
turers openly sharing data, capacity, inventory, and even processes to meet demand flexibly.

PLATFORM & INFRASTRUCTURE ORCHESTRATION
(see Deliverables of WP5 and WP6)
• Secure multi-tenant data/compute
• API/streaming backbone

SUPPLY CHAIN DESIGN, RESILIENCE & RELIABILITY
(see Chapter 3.2)

• Simulation and stress tests: Failures, surges, shifts
• Virtual buffers & pooled safety stock across providers
• Trust KPIs: On time delivery, promise stability, low nervousness

COORDINATION ACROSS PROVIDERS
(will be addressed in WP5 and WP6)
• Ontology-driven interoperability (plug-and-play data exchange)
• Tiered SLAs & prioritisation

CORE PLANNING & EXECUTION
(see Chapter 3.3)
• Dynamic job fulfilment & reallocation: Promise/repromise
• Rolling-horizon re-planning/re-optimisation
• Adaptive scheduling under uncertainty: Hedge yield/demand

DEMAND INTEGRATION & BOOKING & PRICING
(see Chapter 3.3)
• Bias-aware forecast ingestion: Correct bias/shift before booking
• Flexible lot/slot management under uncertain timing
• Dynamic pricing

Figure 3.1: Architecture of MaaS capabilities

Achieving this vision requires careful governance structures, clear definitions of what is shared, and
optimization methods to balance individual and collective goals:

• Governance models for sharing (ownership, trust, incentives) are addressed in Deliverables of
WP5,

• What can be shared (data, machines, stock, planning processes, etc.): As discussed in Deliv-
erable 7.1, a MaaS ecosystem can enable sharing of various resources and information among
manufacturers, turning isolated operations into a more flexible, distributed production network.
Key shareable categories include data, production capacity, inventory buffers, and even plan-
ning/execution processes.
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• Optimization challenges will be discussed in what follows in this chapter.

Given the scope of this deliverable, we focus in what follows on the detection, prediction, and
prescriptive analytics jointly with DTs and simulations enabled by the digitalization within the context
of manufacturing-as-a-service.
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3.2 Supply chain network design

3.2.1 Multi-echelon and multi-criteria design

Problem statement

Supply Chains (SC) operate in a volatile environment, where traditional approaches fail to ensure
resilience. Organizations at large, and the ACCURATE pilots in particular, are calling for proactive
disruption management as a key means to strengthen resilience and reduce vulnerabilities. A static
approach, based on historical data analysis, can result in cascading failures and the bullwhip effect.

An innovative, integrated decision-making framework that enables the design of multi-echelon,
resilient supply chains with increased efficiency and adaptability is crucial for both efficiency and
survival. Simulation design, which enables the creation of a digital representation of a physical system,
and multi-criteria decision analysis contribute to the development of such a framework through disruption
anticipation and proactive decision-making analysis. A critical part of such a task is identifying the
requirements for a supply chain simulation tool dedicated to supply chain design, planning, and stress-
testing.

In close collaboration with the ACCURATE pilots, two approaches were distinguished:

• Proactive management: For proactive management, one needs to identify the critical materials
and suppliers (nexus nodes identification) to increase time-to-survive when disruption occurs.

• Reactive management: For reactive management, the goal is to understand the impact and
select the appropriate resilience strategies (decision-making support tool) to decrease time-to-
recovery (Ivanov 2021). The further alignment of proactive and reactive resilience management
approaches is highlighted in Chapter 3.

To integrate the decision-support model and the simulation model to develop the digital master, high
interaction between the simulation and prescriptive models is required (see Figure 2.3).

Manufacturing-as-a-Service (MaaS) approach offers new opportunities to increase SC resilience and
feasibility. To implement it, we propose a decision-support framework that allows for the orchestration
of decentralized manufacturing resources, evaluates suitability through ontology-based matchmaking,
and integrates resources into adaptive production plans. MaaS allows the creation of agile and recon-
figurable networks through manufacturing capacity and volume allocation, and provides stakeholders
with more planning flexibility. For MaaS implementation, organizations require a decision-making
framework at both the factory level and the network level to capture the behavior of all tiers involved,
enabling coordination across multi-echelon supply chain structures, where decisions are aligned across
stakeholders.

Solution approaches

The proposed approach aims to evaluate how MaaS principles improve the network-wide performance
in terms of resilience and network reconfiguration. Through simulation modeling of a dynamic, multi-
echelon system and analyzing the insights gained from simulation runs, MaaS decision-makers have
the opportunity to evaluate various recovery strategies and adopt a proactive approach to redesign the
network.

For the ACCURATE project, a decision-support framework based on the concepts of digital twin and
manufacturing-as-a-service is developed. The proposed framework combines a multi-echelon modeling
approach, Discrete-Event Simulation (DES), and Multi-Criteria Decision Analysis (MCDA) to evaluate
resilience, identify bottlenecks, critical suppliers, and areas for possible optimizations.

Multi-echelon modeling captures the structure of the supply chain across multiple stages and loca-
tions, connecting suppliers, manufacturers, distribution centers, and end customers through (Nguyen and
Ivanov 2025b):
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• Material, financial, and information flows across various tiers;

• Inventory policies at each node;

• Strategic interactions between tiers;

• Lead times and other target KPIs;

Multi-echelon modeling evaluates system-wide effects of disruptions or reconfigurations, helping
anticipate unseen dependencies.

Discrete-event simulation models the network as a sequence of events. It is used to represent the
dynamic behavior of the simulation by setting the following events to start at an exact time in the
simulation:

• Production run;

• Shipment arrivals;

• Delivery/production/supply delays;

• Site closure;

• Stop of production.

DES provides a realistic view of processes under possible disruptions, tracks time-based KPIs (e.g.,
order fulfillment delays, queue lengths), and supports decision-making in a virtual environment.

Multi-Criteria Decision Analysis (MCDA) evaluates trade-offs between competing objectives such
as costs, time, resilience, and sustainability. This helps adjust alternative strategies for decision-making
based on current objectives:

• Costs versus resilience;

• Inventory versus lead time;

• Environmental impact versus delivery speed.

In the case of ACCURATE, MCDA is integrated into a decision-support framework to facilitate the
comparative evaluation of alternative supply chain network designs, prioritize resilience strategies, and
provide a transparent decision-making support system for users.

The solution approach aims to integrate a network-level simulation model with the MaaS approach by
leveraging digital twins of the supply chain. Based on three pilot models, introduced in Deliverable 4.1,
Airbus Atlantic, Tronico, and Continental, the understanding of digital simulation model template needs
and characterization of the steps involved in the general pipeline creation for the ACCURATE project
were identified. Each of the created instances of supply chain networks for pilots captured tiers of
network, capacity range, processing logic, maintenance profile, and performance metrics for each node.
Performance analysis of simulation models, both under normal operating conditions and disrupted
conditions, enables the provision of necessary information for informed decision support. Simulation
runs produce holistic insights into lead times, capacity utilization, and service levels, which MaaS can
use to compare further states where MaaS resources are added or removed.

Supply Network Analysis Tool

In the Technical report after M18, we present the Supply Network Analysis Tool, which allows us to
model and analyze the supply chain on two layers: analytical and simulation layers. For the analytical
layer, the Supply Network Analysis Tool is developed to model the supply chain as a network. The tool
aims to identify critical nodes and paths of disruption cascading. The contribution of the developed tool
is twofold.
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• The tool offers proactive resilience management options for implementation.

• Reducing the real-world supply chain network complexity is necessary for computationally af-
fordable, sustainable, and user-friendly solutions. This tool is therefore helpful in simplifying the
network before incorporating it into simulation models and optimization models, without losing
essential details.

For the simulation layer, simulation models are developed with important supply chain policies
(sourcing policies, inventory management policies). The simulation models are also helpful in esti-
mating the resilience indicators of the service providers in matchmaking from the MaaS view. For the
optimization models, we have developed two optimization models (resource allocation and the need to
expedite resources).

In the continuity of Deliverable 4.1 and the Technical report after M18, let us introduce two additional
key functions:

• To identify the nexus nodes (hidden critical nodes inside the network),

• To analyze the internal risk of supply chain networks.

Node-level metrics (degree centrality, betweenness centrality, eigenvector centrality, closeness cen-
trality, etc.) describe the characteristics of the material and supplier nodes. Simulations measure the
resilience performance of the network through indicators (lost sales, time-to-survive, time-to-recover,
etc.). We then combine network metrics and resilience metrics into a single dataset to train the model in
two steps.

The first user interface of the Supply Network Analysis Tool is illustrated in Figure 3.2. The
project team has worked to advance the solution and integrated more features (generalized real-world
supply chain model, generalized disruption event modelling, and interact with three levels of detail when
analyzing the supply chain network level). The latest update of our solution is described in Chapter 4.

Generic simulation models: Make-To-Stock, Make-To-Order

In simulation modeling, production strategies are generally divided to Make-To-Stock and Make-To-
Order. The decision support framework developed through the ACCURATE project aims to incorporate
patterns for both strategies and align them with the MaaS approach.

In Make-To-Stock systems, production is driven by forecasts. The main disruption mitigation strategy
is through the creation of inventory buffers. In Make-To-Order systems, production begins only after
placing an order, which allows the usage of capacity flexibility and network responsiveness as disruption
mitigation opportunities.

Under Make-To-Stock, a key resilience measurement is represented by safety stock. Although
safety stock can be calculated in different ways, one of the approaches can be represented as given in
equation (3.1):

SS = z ×QL ×
√
L (3.1)

where SS – safety stock level, z – service level factor, QL – standard deviation of demand during lead
time, L – lead time.

Reorder rule in this case would be represented as in equation (3.2):

if IPc,t ≤ sc ⇒ Qc,t = Sc − IPc,t (3.2)

where IPc,t – inventory of component c: on-hand + on-order – allocated, sc – reorder point, Qc,t –
component order, Sc – order-up-to level.

Inventory balance would be represented as in equation (3.3):

Ic,t+1 = Ic,t +
∑
k∈Kc

(
Qck,t−Lck

)
− rc,t (3.3)
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(a) Introduction view
(b) Upload network structure to predict nexus ma-
terial nodes

(c) Results of nexus material node identification (d) Visualize supply chain as a Multipartite network

Figure 3.2: Supply Networks Analysis Tool: Overview and workflow.

where Ic,t+1 – on-hand inventory of the component c in the period t + 1, Ic,t – on-hand inventory of
the component c in the period t, Qck,t – order placed at time t from supplier k of component c, rc,t –
requirement of component c in period t.

In Make-To-Order settings, key resilience measurements would be possible capacity allocation under
disruption, as in equation (3.4):

C(t) = C −D(t) + V (3.4)

where C – baseline production capacity, D(t) – capacity disruption at time t, V – extra volume flexibility.
Another key resilience measurement in the case of the Make-To-Order general strategy is lead time

as in equation (3.5):

LT =
Q

C(t)
+ Tsetup (3.5)

where Q – order size, Tsetup – setup time.
Customer-driven release rule as in equitation (3.6):

Releasep,t = Dp,t +Bp,t−1, Bp,t = max{0,Dp,t − FGp,t} (3.6)

where Releasep,t – release quantity of product p into production, Dp,t – external customer demand for
product p in period t, Bp,t – backlog for product p, FGp,t – on-hand inventory of finished good p.

Production in this case will be scheduled according to the rule in equation (3.7):

Prodp,t = min{Capshopp,t , Release
p,t+Lprod

p
} (3.7)

where Prodp,t – quantity of product p produced at time t, Capshopp,t – maximal shop-floor capacity,
Release

p,t+Lprod
p

– release quantity of product p into production.
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Industrial implications: The case of ACCURATE pilots

• Airbus Atlantic: Make-To-Stock. The system is structured to maintain inventory with safety
stock and replenish inventory according to demand. A nominal finished goods warehouse
regulates the demand information from the customer, so demand doesn’t directly trigger
production. In the event of disruption, the logic remains stock-focused: production adjusts
based on whether inventories fall below predetermined thresholds, rather than directly on
incoming orders.

• Tronico: Make-To-Order. The system operates in high-mix, low-volume settings, as produc-
tion begins only when the system receives a product order. A customer-oriented production
planning process is implemented, where a person assigns a production window as soon as a
customer order is received. In this case, demand directly triggers the release of quantities,
and any unmet demand results in a backlog.

• Continental: Make-To-Stock. Consistent with the automotive industry, the pilot is using a
Min-Max inventory policy with demand covered from stock. This aligns with Continental’s
need for stable flows in a high-volume environment. The model specifies that production
follows a partial production policy set to 100% of what the inventory policy requires, meaning
production activity is entirely stock-driven.

Numerical experiments on industrial or simulated data

During the creation of pilot supply chain models, the primary data for SC modeling have been collected
from Airbus Atlantic, Tronico, and Continental. Each of the analyzed supply chains has a large number
of suppliers (37 from Airbus Atlantic, more than 65 from Continental, and over 600 from Tronico),
which complicates the transparent understanding and management of these supply chains. Each of the
companies has its own challenges, which, however, overlap with those of the others. Historical data and
insights from partners, gathered during bi-weekly use case meetings, have been analyzed to collect both
qualitative and quantitative data. Subsequently, we applied statistical analyses to build the supply chain
network and processes.

Industrial implications: The case of ACCURATE pilots

• For Airbus Atlantic, the main task of the created simulation models is to analyze the reliability
of suppliers in various conditions.

• For the Continental supply chain stress test model, the primary goal of the developed sim-
ulation model is to assess the resilience and robustness of its supply chain under various
disruption scenarios. The main modeling methods involved simulating supplier shutdowns,
extending delivery lead times, and introducing transportation blockages.

• For Tronico, the primary goal is to develop a two-level simulation model that encompasses
both the supply chain and shop floor levels. The model includes suppliers and customers
at the supply chain level, considering inventory policies and supplier search. At the shop
floor level, the model includes a high-level production process, focusing on operations
with bottlenecks and demonstrating an approach to solving problems related to suboptimal
production performance.

Outcomes and insights

The application of multi-echelon, DES, and multi-criteria simulation approaches in industrial pilots
demonstrated the capability to identify spare-nodes and provide system-wide visibility into supply chain



CHAPTER 3. METHODOLOGIES AND ALGORITHMS 20

performance under various conditions. The integration of simulation modeling with MaaS concepts
enables the assessment of how flexible, decentralized manufacturing resources can mitigate disruptions
and enhance agility.

The pilot models highlight that resilience requires alignment of strategic and operational decision-
making. Strategic enablers include supplier diversification, robust supply chain design, and contingency
planning. Operational enablers comprise flow management, tier coordination, inventory control, predic-
tive analytics, and alternative sourcing and transport options. In combination, these measures sustain
service levels during disruptions, accelerate recovery, and reinforce overall resilience.

Together, pilot models and the Supply Networks Analysis Tool create a strong foundation for MaaS
integration. Having the possibility to simulate the supply chain network under normal and disrupted
conditions, analyze the current network, and find that the nexus model contributes significantly to
resilience improvement. Developed supply chain pilots and the Supply Network Analysis Tool aim to
improve proactive, data-driven resilience planning. This provides a pathway to more agile, sustainable,
and viable supply chains in increasingly volatile global environments.

Integration with MaaS

Through simulating various disruption scenarios, MaaS can access different configurations of sup-
ply/production strategies, cost, and lead-time reconfiguration. This integration of disruption scenarios
with MaaS also supports strategic capacity planning. Decision-makers gain quantitative evidence on
when and how to activate MaaS resources for maximum resilience, ensuring that the network remains
agile and responsive. In the case of ACCURATE, data in developed supply chain instances, supported
by MaaS-oriented services, includes production resources, goods, materials, and other relevant informa-
tion, as explained in Deliverable 7.1. A selection of these integration options will be further developed,
implemented, and demonstrated in the context of WP6 and WP7.
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3.2.2 Towards dynamic network topology via Manufacturing-as-a-Service

Manufacturing-as-a-Service (MaaS) introduces new challenges for material flow optimization. Unlike
vertically integrated supply chains, MaaS networks rely on distributed providers, time-slot reservations,
and dynamic customer orders. This requires coordinated optimization of inbound logistics, internal
production, and outbound flows.

Scope and control objects include:

• Physical flows: Raw materials, Work in Process (WIP), finished goods across multiple providers,
by-products, excess inventory.

• Capacity flows: Reservable and tradable time slots, represented as virtual capacity.

• Information flows: Forecasts, quotes, Internet of Things (IoT) data (related to e.g., yield, failures),
and Service Level Agreements (SLAs).

Table 3.1 maps the MaaS sharing landscape by resource type, clarifying what is shared, why it creates
value, and how it is typically governed and controlled. For each category—ranging from information,
physical capacity, and materials to logistics, orchestration processes, assurance, knowledge assets, and
resilience—the table enumerates concrete sharing objects (e.g., Available-To-Promise windows, machine
slots, pooled buffers), the business rationale (e.g., shorter lead times, variability pooling, improved
reliability), the prevalent governance forms (centralized platforms, federated dataspaces, or bilateral
agreements), and the trust/ privacy controls that make collaboration safe (role-based access, Service
Level Agreements (SLAs), auditability, selective disclosure). Read left-to-right, it provides a practical
checklist for designing MaaS collaborations: Identify the asset to share, define the value logic, select an
appropriate coordination model, and institute proportional safeguards.

This chapter is organized to move from information flows to physical execution, showing how
demand, uncertainty, and capacity interact in a MaaS setting. We begin with Chapter 3.3.1 on de-
mand–supply matching and fulfillment, where we motivate rolling-horizon updates and introduce three
building blocks—Module 1 (forecast-aware ATP and slot allocation), Module 2 (lot-sizing under uncer-
tain timing), and Module 3 (rolling-horizon Short-Term Demand-Supply Matching)—complemented by
forecast-stability metrics. We then extend the information view to disturbance and disruption propa-
gation, detailing a data-driven procedure to characterize cycle-time uncertainty and related metrics and
motivating its use in simulation-based digital-twin DSS.

Next, Chapter 3.3.2 turns to physical capacity, starting from an eligibility-aware unrelated-parallel-
machine model and lifting it to the MaaS network level, with modeling assumptions, platform-level
confirmation logic, and dynamic reallocation/freeze-fence policies.

Finally, we broaden the scope to materials (shared inventories, pooling, and allocation policies)
and dynamic pricing (state-dependent quoting under capacity and due-date constraints), completing the
end-to-end pipeline from signals and shocks to executable schedules and market mechanisms.
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Table 3.1: MaaS sharing landscape grouped by type of resource

Resource type What gets shared? Why it matters? Typical governance
Information Rolling forecasts, ATP windows, order sta-

tus, overall equipment efficiency, on-time
delivery, quality certificates, traceability
events, machine health snapshots

Aligns plans across firms; reduces
bullwhip; enables compliance &
end-to-end visibility; accelerates is-
sue resolution

Centralized platform data hub; or feder-
ated dataspace via consortium

Physical capacity (machines, slots,
skills)

Machine time, fixtures/tools, skilled opera-
tors, reservable time windows, service cal-
endars

Scales output on demand; mone-
tizes idle assets; shortens lead times;
broadens capability access

Brokered marketplace (centralized) or
federated capability directory; bilateral
slot contracts

Materials (inventory & buffers) Shared safety stock, pooled WIP buffers,
decoupling stock at DB/DC, emergency
spares, jointly managed raw materials

Pools variability; lowers total inven-
tory; protects service during shocks;
speeds recovery from supply delays

Consortium rules; or bilateral pooling
agreement

Logistics & warehousing Co-loading on transport lanes; shared
cross-dock windows; multi-tenant DC
space; return flows consolidation

Improves delivery reliability; re-
duces freight & handling costs; low-
ers emissions via consolidation

TMS marketplace (central) or federated
lane/slot catalogs; carrier exchanges;
neutral cross-dock operators

Processes & orchestration (plan-
ning, scheduling, dispatch)

Vertical/horizontal integration of opera-
tions management decision; allocation; AT-
P/repromising guardrails; cross-site rout-
ing; eligibility-based assignment; slot trad-
ing rules

Aligns mid/short-term plans; bal-
ances customer tiers; reduces ner-
vousness; matches jobs to best-fit
capabilities

Coordinator role (OEM/neutral) or
market-like bidding/auctions; federated
coordination with local solvers

Assurance (quality & mainte-
nance)

Shared inspection steps/results; golden
samples; defect taxonomies; calibra-
tion references; predictive-maintenance in-
sights & playbooks

Fewer defects; faster containment;
lower downtime; harmonized qual-
ity expectations across partners

Joint quality councils; federated PdM
communities for similar assets

Knowledge assets (digital twins,
models, ontologies)

Process & factory twins; simulation
sandboxes; federated machine learning
weights; shared vocabularies/ontologies;
best-practice templates

Faster onboarding; consistent se-
mantics; better what-if decisions;
reusable analytics across sites

Licensed asset sharing via registries;
consortium model libraries; curated on-
tology governance

Resilience assets (risk & continu-
ity)

Reserve capacity; contingency routings;
emergency stockpiles; crisis playbooks;
mutual-aid rosters

Faster recovery; mitigates disrup-
tions; ensures continuity of critical
flows; network-level preparedness

Mutual-aid; centralized platform re-
serves; parametric insurance schemes
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3.3 Supply chain planning in a MaaS ecosystem

3.3.1 Information flows

Demand supply matching and demand fulfillment.

In a typical production system, customers submit long-horizon demand forecasts, which are then updated
on a regular basis (e.g, this is the case of Tronico and Continental), as illustrated in Figure 3.3. This leads
to rolling horizon information updates (Altendorfer and Felberbauer 2023). In production planning,
demand forecasts act as essential inputs that translate market expectations into tactical and operational
decisions. They inform material procurement strategies and support the design of efficient production
schedules, thereby linking customer demand to resource utilization within the manufacturing system.

In a MaaS network, finding a factory is overshadowed by tightly-coupled realities. Forecasts arrive
biased and shift across weeks, so Available-to-Promise (ATP) must be truly dynamic, distributed across
providers, and tuned to SLAs if promises are to be credible (Module 1). Major customers commit
quantities without firm dates, pushing lot sizing to balance the cost of early stock against the risk of late
backlog (Module 2). Machines fail, demand pivots, and previously promised orders must be re-planned
in rolling fashion with stability guards to prevent schedule instability (Module 3). Together, these
challenges define the minimum viable toolkit that turns a mere directory of factories into a trustworthy
MaaS platform—one that promises well, adapts fast, shares fairly, and keeps its word.

Figure 3.3: Example of period forecast updates

Module 1. Forecast-aware Available-to-Promise and Slot Allocation

Goal: Decide which orders can be promised given biased and evolving forecasts.
Features:

• Bias-corrected forecast updates: We adopt the industry-agnostic Martingale Method of Forecast
Evolution (MMFE).

• Available-to-Promise (ATP) variables sized with uncertainty.

• Rolling-horizon re-promising with stability controls.

MaaS link: Ensures reliable promises across multiple providers (dynamic, distributed, tiered ATP).

Module 2. Lot-sizing under Uncertain Timing (and Quantities)

Goal. Decide production quantities and timing when customers reserve quantities but not exact slots.
Features:
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• Lot sizing with stochastic demand timing (windowed arrivals), by relying on and extending state-
of-the-art models, approaches, and assessment frameworks (see Appendix B).

• Trade-off: Early release→ inventory cost versus late release→ backlog risk.

MaaS link: Central to handling flexible bookings and shared inventory across providers.

Module 3. Rolling Horizon Short-Term Demand–Supply Matching (STDSM)

Goal: Reallocate and re-promise orders dynamically under changing conditions.
Features:

• MILP-based planning with decomposition into clusters of factories.

• Re-promising penalties (nervousness) and freeze fences for stability.

• Re-optimization in a rolling horizon with feedback.

MaaS link: Enables agility and dynamic orchestration of multiple factories on a shared platform.

Table 3.2: Summary of Forecast Stability Metrics

Metric Measure Purpose
Coefficient of Variation (CV) Relative forecast instability Comparing across products or lines
Mean Absolute Forecast Change
(MAFC)

Absolute changes between updates Rolling forecasts

Forecast Error Volatility (FEV) Error consistency If actuals are available
Forecast Instability Index (FII) Magnitude of swings (penalizes

large changes)
Detecting unstable forecasting

The algorithmic pipeline is formalized in Algorithm 1:

Algorithm 1 : Characterization and modeling of the variability of forecast fluctuations.
1: Detect anomalies in submitted forecasts
2: Extract forecast stability metrics: CV, MAFC, FEV, FII (see Table 3.2)
3: Solve an unsupervised classification task to identify static vs. dynamic forecast patterns
4: Model controlled fluctuations and integrate them explicitly into production planning decisions (see

WP3) via robustness-based approaches
5: Notify abnormal fluctuations and investigate MaaS mitigation strategies (e.g., outsourcing de-

mand peaks, reallocating to freed slots, collaborative use of partner capacity)

Industrial implications: The case of ACCURATE pilots

As highlighted in Deliverable 7.1, dedicated DSS-oriented use cases have been defined to model
the variability of forecast fluctuations for Continental and Tronico. These forecasts are updated
monthly. Each month, during the third week, the customer submits a 24-month rolling forecast
for each item. The data is provided in Excel format, where each record corresponds to a quantity
associated with a specific date and is accompanied by four status indicators.

Applicable rules:

• Firm Orders (0–3 months): No changes are permitted. Quantities are considered firm
commitments.

• Limited Flexibility (3–6 months): Quantities may vary by up to±10% relative to the forecast
submitted for the previous month. From Month 6 to Month 3, a maximum deviation of±10%
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is permitted up to three times, based on the quantity forecasted at Month 6.
Notably, there are no specific constraints on the forecast value when transitioning from
Month 7 to Month 6.

• Full Flexibility (6–24 months): No restrictions apply; forecasts are fully adjustable.

This setting illustrates the tension between short-term rigidity and long-term uncertainty,
which is a recurrent challenge in industrial supply chains. By systematically analyzing these forecast
dynamics, one can detect where and when demand variability creates mismatches with available
resources, thus highlighting opportunities for Manufacturing-as-a-Service (MaaS) mechanisms.
For instance:

• Peaks in demand identified through anomaly detection can be mitigated by sharing MaaS
capacity.

• Stable forecast windows (0–3 months) allow advance slot-booking for MaaS partners.

• Fully flexible horizons (6–24 months) create opportunities for MaaS-based scenario explo-
ration and collaborative planning.

Disturbances, disruptions, and their propagation.

In addition to analyzing demand forecast fluctuations and their explicit consideration, we also characterize
the uncertainties affecting cycle times to investigate the value of disturbance propagation. Our focus
includes known unknowns and unknown knowns (see Figure 3.4). As highlighted in Deliverable 7.1,
analysis of disturbances/disruptions is done for all three pilots. This serves to better inform shop-floor
decisions and estimate the current ability to absorb uncertainty.

Figure 3.4: Adaptation of Rumsfeld matrix
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Figure 3.5: Disturbances and disruptions analysis
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Consider a cloud of N points {oi}Ni=1 drawn independently from an unknown probability measure
µ on Rp with compact support S corresponding to a random variable ξ. The algorithmic pipeline is
formalized in Algorithm 2:

Algorithm 2 : Characterization of uncertainty at the shop-floor level.
1: Extract the processing times/waiting times/completion times/cycle times of operations on quali-

fied machines, defining the routes of products,
2: Extract the statistical summaries (e.g., mean, standard deviations, modes).
3: Derive the empirical probability distributions. The main-mass, tails and shape approximation of

µ can be derived from the sequence of moments associated with {oi}Ni=1 (see e.g., Gavriliadis and
Athanassoulis 2009; Pauwels, Putinar, and Lasserre 2021).

4: Classify performance detractors per frequency versus impact (e.g., duration).

Figure 3.5 illustrates an example of the uncertainty analysis, performed as described in Algorithm 2.
Based on the empirical findings from pilot use-cases, the simulation models described in Section 3.2 will
be enriched with real-life features to assess how MaaS capabilities can mitigate disturbances/disruptions
in WP7.

3.3.2 Physical capacity

As a starting point, we considered the model proposed in (Maecker, L. Shen, and Mönch 2023) for the
unrelated parallel machine scheduling problem with eligibility constraints and delivery times, aiming
to minimize total weighted tardiness. The definition of their problem was motivated by a cloud-based
manufacturing services provider for Printed Circuit Boards (PCB). In this context, machine customers
can upload and edit their PCB designs through an online tool and place production orders. The service
provider is expected to have access to a diverse network of PCB companies with varying capabilities.
Building on this idea, this paper adopts a tripartite perspective of MaaS, wherein one group of users
provides services, another group requests them, and a centralized MaaS framework facilitates and
coordinates the exchange of these services (see Figure 3.6).

Figure 3.6: Vertical and horizontal integration of scheduling decisions: From toolset to MaaS and vice
versa

Given a set of n service orders (i.e., tasks) j ∈ J and a set of m ressource providers (i.e., machines)
i ∈ M, the MaaS platform coordinates the assignment and sequence of tasks to the most qualified
machines (see Figure 3.7). Each task j has a due date dj , a weight wj , a processing time pij , and a
delivery time qij for each machine i. All tasks are available at time zero, each task j needs to be processed
by one and only one machine without interruption, and each machine i can handle at most one task at a
time. The delivery time qij occurs immediately after completing the task j on the respective machine i.
Tardiness and eligibility are considered as optimization criteria.
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Figure 3.7: Illustration of the MaaS scheduling framework

Offline MaaS Scheduling Problem: Assumptions

The following assumptions are made in the formulation of the scheduling models:

1. Task Availability: All service orders are assumed to be available at time zero.
2. Task dependency: All jobs are considered as independent; no precedence constraints are included.
3. Single-Machine Processing: Each task is processed non-preemptively by exactly one machine;

once a task starts, it runs to completion without interruption.
4. Processing and Delivery Times: For each task j and machine i, the processing time pij and the

machine-specific delivery time qij are known and deterministic. The delivery time is assumed to
occur immediately after the task is completed.

5. Due Dates and Weights: Each task has a predetermined due date dj and a weightwj that quantifies
its importance, both of which are known in advance.

6. Machine eligibility: Although the machines may be heterogeneous in terms of processing or
delivery times, it is assumed that the eligibility is evaluated during the matchmaking procedure
detailed in deliverables associated with WP2.

7. Setup Times: If setup times exist between consecutive tasks, they are either incorporated into the
processing times pij .

Appendix A provides two mathematical formulations of the core offline MaaS scheduling problem
(i.e., all information about the problem is known in advance and the solution can be fully computed
before execution), namely, a mixed integer programming model (see Appendix A.1) and a constraint
programming model (see Appendix A.2).

MaaS Platform Framework: Assumptions

The MaaS context adds factors inherent to the dynamics and information flow of the platform itself,
which we discuss below.

• Each job arrives at a date rj and a deadline d̄j .
– The deadline of each job is only known at time rj , and the deadline is only known at date d̄j .
– The release date corresponds to the time the client places the order, and the deadline corre-

sponds to the date the client withdraws the order from the platform.
• Suppliers can indicate their capacities and time availability on the platform.
• At each period t, the platform provides to each supplier i a set of jobs to perform as well as the

sequence of jobs to perform.
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– The platform does not necessarily schedule all available jobs.
• Once the order proposals have been made, each supplier contacts the customer to confirm the

transfer or eventually reject the assignment.
– In other words, an assignment of a job j to a suppliers s is accepted only if indicator ēij = 1.
ēij = 1 is revealed to the platform only after job j has been affected to supplier j. In this
case, ēij = 0, so job j returns to the platform and is assigned in the next period.

– In our experiments, we consider the case where ēij = 1 for all supplier i and job j.
• It is considered that new suppliers or increased capacities can be dynamically incorporated.

Appendix A.3 includes an extension of the problem that considers the case where tasks arrive
dynamically over time with fixed assignment (i.e., no reassignment possible) and external confirmation.
In what follows, let us present several flexibility policies that enable us to further enhance the quality of
MaaS solutions in online settings.

General Task Flexibility Policies

At each decision point t, the task set can be defined as:

Jt = J new
t ∪ J pending

t

where J new
t = {j ∈ J | rj = t} are newly released tasks, and J pending

t corresponds to a set of non-
started tasks (sj > t) to reassign from the previous periods of time (rj < t) depending of flexibility
policies.

• J new
t = {j ∈ J | rj = t} are newly released tasks,

• J pending
t = {j ∈ J | rj < t, sj > t, δj = 0} are tasks not yet started and not confirmed.

To allow realistic dynamic reassignments, we define several policies controlling which tasks return to
J pending
t :

• All-Rejected / Full Flexible: All rejected tasks are considered for reassignment

– J pending
t = {j ∈ J | rj < t, sj > t, δj = 0}

• All-Unconfirmed / Semi Flexible: All unconfirmed tasks are considered for reassignment on the
same machine.

– J pending
t = {j ∈ J | rj < t, sj > t, δj = 0}

Task-Specific Flexibility Policies Based on Due Dates

We introduce a task-specific flexibility policy that varies according to the due date of each task. The
idea is to allow task reassignment and rescheduling within certain time windows relative to the due date,
using a task-specific flexibility margin ∆j .

Time Regions: For each task j ∈ J pending
t , we define three decision regions depending on the current

period t:

• Region 1: Full Flexibility (Pre-critical)
If t < dj −∆j , task j may be reassigned to any machine and fully rescheduled. We use this phase
to maximize eligibility.
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• Region 2: Limited Flexibility (Critical)
If dj −∆j ≤ t < dj and the task has not started (sj > t), the machine assignment becomes fixed,
but sequencing and timing on the assigned machine may still be adjusted. In this region, we aim
to minimize expected tardiness.

• Region 3: Frozen
If t ≥ dj or if task j has already been confirmed (δj = 1), all decisions become fixed, i.e., machine
assignment, timing, and sequence are locked.

Set Definitions: At each decision epoch t, define the following subsets:

J (1)
t = {j ∈ J pending

t | t < dj −∆j}

J (2)
t = {j ∈ J pending

t | dj −∆j ≤ t < dj and δj = 0}

J (3)
t = {j ∈ J pending

t | t ≥ dj or δj = 1}

Flexibility Constraints:

• Region 1: Assignment variables ytij remain binary and unconstrained.

• Region 2: Freeze assignment to the current machine:

ytij = ȳij , ∀i ∈M, j ∈ J (2)
t (3.8)

• Region 3: Fix start and completion times:

sj = s̄j , Cj = C̄j , ∀j ∈ J (3)
t (3.9)

Objective Switching: The optimization objective adapts depending on the current region of each task:

min

α ·
∑

j∈J (2)
t ∪J (3)

t

wjTj − β ·
∑

j∈J (1)
t

∑
i∈M

eijy
t
ij

 (3.10)

where Tj = max(0,Cj − dj) is the tardiness, eij is the eligibility score, and α, β are weighting
coefficients.

Remarks:

• ∆j can be a fixed constant or a function of task attributes, e.g., ∆j = θ(dj − rj).
• This policy enables the system to progressively adjust the schedule as the due date approaches,

striking a balance between flexibility and stability.
• It can be integrated with confirmation logic and dispatching rules in the online model.
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Algorithm 3 Rolling Horizon Scheduling with External Confirmation and Flexible Reassignment
Input: Simulation final horizon Tmax, task set J with parameters (pj , qj , dj , eij , rj), machine setM,

weights wj

Output: Scheduling decisions over time
1 Initialize confirmation flags: δj ← 0, ∀j ∈ J
2 Initialize fixed timing decisions s̄j , C̄j as empty
3 for t← 0 to Tmax do
4 Define new tasks: J new

t ← {j ∈ J | rj = t}
5 Define pending tasks: J pending

t ← {j ∈ J | rj < t, sj > t, δj = 0}
6 Define eligible tasks: Jt ← J new

t ∪ J pending
t

7 Build the associated optimization model for period t with variables ytij , zjk, sj ,Cj ,Tj

8 Add constraints:
• Assignment: Each task in Jt assigned to at most one machine
• No reassignment for confirmed tasks (δj = 1)
• Fix timing decisions (sj ,Cj) for confirmed tasks
• Precedence, completion, and tardiness constraints
• Optimization criteria: Minimize tardiness, maximize eligibility

Solve the resulting optimization model
Extract assignment decisions ytij and timing decisions sj ,Cj

Communicate proposed assignments to providers
Receive confirmation flags δj from providers for tasks assigned at t
foreach Task j with δj = 1 do

Store fixed times: s̄j ← sj , C̄j ← Cj

end
Tasks with δj = 0 remain in pending for next period

9 end

Table 3.3: Instance generation: Parameters

Parameter Values
Processing times pij ∼ U(1, 100)

Delivery times qij ∼ U(1, 30)

Eligibility coefficients eij ∼ U(0, 1.0)

Due dates T ∈ {0.4, 0.6}
R ∈ {0.4, 0.6, 0.8}

Numerical experiments

First experimental results consider small instances with four machines and 10 tasks, based on state-of-
the-art schemes. The problem parameters were generate similarly as by (Maecker, L. Shen, and Mönch
2023), in which the due dates follows the scheme of (Potts and Van Wassenhove 1982):

dj ∼ U
(
p̄
(
1− T − R

2

)
+ qmin, p̄

(
1− T +

R

2

)
+ qmin

)
,

where T is the tardiness factor, R is the relative range of due dates, and p̄ and qmin are calculated as
follows:

p̄ =
1

m

∑
j∈J

min
i∈M

pij , and qmin = min
i∈M,j∈J

qij .
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All task weights wj are considered equal to 1 for easier interpretation of the tardiness values, as there
are no relevant considerations in this regard at this stage. All parameters are summarized in Table 3.3. 15
instance samples have been generated for each pair of parameters (T ,R). In future research, we intend
to develop efficient solution approaches for industrial-scale instances that consider the distributed nature
of a MaaS system coordinated in a centralized way.

Industrial implications: The case of ACCURATE pilots

MaaS scheduling can be seen as a natural extension of scheduling on shop floors, as illustrated in
Figure 3.6. To support distributed manufacturers in sharing and utilizing manufacturing resources,
consider a MaaS framework that manages the scheduling of requested jobs on shared, unrelated
parallel machines in a centralized manner. Sharing capacity could be interesting for the pilots in
the following use-cases:

• Airbus Atlantic: Manufacturing engineering and operations must adapt tooling, layout,
digital work instructions, and station balance when variants or late changes occur, while
preserving throughput/quality and minimizing disruption. Aerostructure assembly is char-
acterized by very large, complex, safety-critical structures, low production rates with high
customization, reliance on skilled labor combined with targeted automation, strict certifica-
tion and quality requirements, and bottlenecks in drilling/fastening and inspection. Rochefort
(Airbus Atlantic) and Nola (Leonardo) are major manufacturing sites for A321 Section 14A,
feeding into Saint-Nazaire for integration. The geographical spread of Section 14A produc-
tion exemplifies Airbus’s global aerostructure supply chain, coordinated by Airbus Atlantic
as the aerostructure integrator.

• Tronico: Sharing capacity for the Tronico could be particularly relevant within MaaS,
as electronic product lifespans are becoming increasingly shorter, while businesses today
demand a growing variety of product types and greater customization options. This implies a
higher quantity of production lots, smaller lot sizes, and more series changes. Instead of each
electronics company investing in redundant capacity to hedge against peaks or disruptions, a
MaaS platform would allow partners to access additional production slots from the ecosystem
dynamically. This reduces idle time during low-demand periods while mitigating the risk of
lost sales or delayed deliveries when demand suddenly increases. Furthermore, by pooling
capacity across companies, the network achieves greater resilience and flexibility.

3.3.3 Materials

In traditional manufacturing, each company holds its own inventory of raw materials and finished goods.
In a MaaS scenario, inventory management can become shared or centralized in several ways. Based
on the insights provided by the ACCURATE pilots, the following options have been identified to be
integrated in supply chain simulation models developed during the first part of the ACCURATE project

• Common raw material stock: If a MaaS provider serves multiple clients that use the same or
similar materials, it may maintain a shared inventory of those materials to fulfill all orders. For
example, a contract manufacturer might buy bulk metal or plastic resin and allocate it to different
customer orders as needed. This “pooled” inventory benefits from risk pooling: the platform
can buffer aggregate uncertainties with less total stock than if each client held separate safety
stocks. Inventory pooling strategies have been employed in supply chain management to minimize
overall inventory levels while maintaining service levels. In MaaS, shared raw inventory means
the platform must decide how much common material to keep and how to allocate it to incoming
jobs.

• Extra stocks (safety stock) for variability: While MaaS emphasizes make-to-order production (to
avoid finished goods inventory), in practice, there may still be safety stocks or surplus production
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kept to ensure reliability. For instance, a platform might produce a few extra units of a batch in
case of defects or to prepare for a possible repeat order. These extra units could potentially be
offered to other clients if applicable (e.g., generic components). Managing such shared safety
stock requires careful bookkeeping. The platform must track which inventory is free for allocation
versus reserved.

• Extra stocks (e.g., leftover materials or products) can sometimes be repurposed or used in
MaaS. For example, if a production run had to exceed the order quantity for quality reasons (such
as a minimum batch size), the surplus might be offered to the same customer as consignment stock
or even sold to another customer who can utilize it. Some platforms also create marketplaces for
surplus materials or parts1, effectively a circular economy aspect where one company’s excess
becomes another’s supply.

3.3.4 Dynamic pricing

Although Task 4.4 (“Dynamic pricing”) has experienced delays, we have developed a preliminary model
that jointly optimizes dynamic pricing and supplier order placement in MaaS systems.

The literature on MaaS platform pricing is limited (Chaudhuri et al. 2021). In ACCURATE, we
consider a sequential decision-making problem over a finite time horizon divided into periods 1, . . . ,T .
At each period, the system state is described by two components:

• Ot: The set of orders that have been accepted but not yet scheduled,

• At: The set of orders that already have a production schedule.

Each order is characterized by a set of features, a price, and a demand. The relevant features depend
on the specific manufacturing application. Features also specify temporal information, such as the earliest
start date and the due date for completion. At the beginning of each period, a decision must be made
regarding the price to post for a newly arrived order type. Based on the posted price and the demand,
the system either accepts the order (in which case it is added to the list of unscheduled jobs) or rejects it.
The scheduling function then determines which jobs from the list of unscheduled jobs are assigned to an
available production time slot for the following period.

Figure 3.8 presents the first version of the methodological framework designed to integrate and
evaluate pricing and scheduling strategies.

On the pricing side, three complementary strategies are considered:

• Constant Price: A constant price is assigned to each job type and remains unchanged throughout
the entire planning horizon. This represents the simplest benchmark, as prices are fully independent
of state or time.

• Static Price: Prices are fixed for each job type within a given period, but can vary across periods.
The price list depends on the scheduling approach. A genetic algorithm is employed, enabling the
exploration of optimized price lists.

• Rolling Look-Ahead: Prices are updated dynamically over time by estimating the value of future
system states. Two estimation methods are applied:

1. An approximation based on the static price,
2. An estimation based on perfect information, representing an upper bound.

• Fully Dynamic Pricing: Prices depend simultaneously on the system state and the specific point
in time. This can be computationally prohibitive in practice due to the extremely large solution
space of the scheduling problem.

1see e.g., GREENCHIPS (https://greenchips.com): A web-platform that supports original equipment manufacturers
and electronics manufacturing service companies in selling their excess stock globally

https://greenchips.com
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Figure 3.8: Dynamic Pricing and Scheduling: First developed framework

On the scheduling side, two baseline allocation policies are examined. The First-In-First-Out Al-
location follows a simple first-come-first-served logic, while the Sorted Periodic Assignment reorders
requests periodically based on predefined criteria (e.g., due dates or price levels).

The integration of these pricing and scheduling approaches leads to a set of candidate solutions,
which are then benchmarked against a perfect information estimate. This reference assumes complete
knowledge of future events, thus representing an upper bound on achievable performance. All strategies
are subject to systematic evaluation, enabling a comparative analysis of solution quality. Preliminary
numerical experiments have been conducted on small, randomly generated instances.

As an initial step, we considered the single-machine case. The work initiated in Task 4.4 of WP4
will be further improved and finalized within WP6.
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3.4 Stress-test model and disruption scenarios: Conventional and MaaS-
based

Disruption scenario definition and stress-testing of resilience strategies

To generate disruption scenarios for stress-testing, recent global events are employed as reference cases.
The scenarios are constructed through a triangulation of historical data, partner expertise, and evidence
from the scientific literature. Each scenario is parameterized in terms of:

• Temporal duration, and

• Spatial scope, with

• Explicit impacts defined on selected supply chain nodes and transport routes.

Table 3.4: Examples of (industry-agnostic) disruption types and their effects across pilots

Disruption type (Industry-agnostic) Disruption Pilots and beyond Disruption effect
Supplier delay Political and social instability (cur-

few) in the region of suppliers
Airbus Atlantic Supplier shutdowns and longer

delivery times caused a shortage
of parts, late deliveries to the
customer, and backlog

Supplier delay Environmental disruptions in the re-
gion of suppliers

Airbus Atlantic Supplier shutdowns and longer
delivery times caused a shortage
of parts, late deliveries to the
customer, and backlog

Capacity reduction Floods in areas surrounding
Rochefort

Airbus Atlantic Production slowdown, leading
to reduced output and order de-
lays

Supplier delay Semiconductor crisis Continental Supply interruptions, backlog,
dependence on specific suppli-
ers

Supplier delay Material shortage scenario (based
on Covid-19 sequences, geopoliti-
cal risks, and social challenges)

Continental Reduces available capacity,
causing cascading order delays

Capacity reduction Suez Canal blockage Continental Route shutdowns, transport bot-
tlenecks, delays across the
global network

Supplier delay Tension in the components market
(increased lead times, prices, pan-
demic, etc.)

Tronico Late/missed component deliver-
ies, production stoppages

Supplier delay Suppliers in risk areas (natural dis-
asters, geopolitics)

Tronico Late/missed component deliver-
ies, production stoppages

Capacity reduction Breakage in the product workshop
with long lead times for components

Tronico Reduces production capacity,
delays orders, and increases
backlog

All developed disruption scenarios can be categorized as either supplier delay or capacity reduction.
The modeling approaches for these types are illustrated in Figure 3.9, while their distribution across the
supply chain is summarized in Table 3.4. As discussed in Chapter 3, the effectiveness of such stress
tests depends on the ability to capture interdependencies across multiple echelons, reinforcing the role
of multi-echelon modeling in disruption assessment.

Supply chain performance assessment against supplier delays and capacity reductions

Measuring resilience of simulated what-if scenarios is crucial for decision-making (A., D., and Simchi-
Levi 2025). The primary KPI used in all pilot supply chains is service level. Service level is a percentage
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Figure 3.9: Supplier delay and capacity reduction modeling methods

of demand met on time during the simulated period, reflecting the ability of a given network to continue
fulfilling customer orders. Lead time, which refers to the time between the moment an order is placed
and the moment the product is delivered, is another KPI used. Time-to-recovery, which represents the
time required for the network to regain its target performance after a disruption, is widely used alongside
other KPIs as well (Ivanov 2025a). In the case of MaaS implementation, Time-To-Recover (TTR) for the
network can be measured as in equation (3.11):

TTR =

∑
n∈N ω(n)× TTR(n,with MaaS)∑

n∈N ω(n)
(3.11)

whereω(n) is the weight of the node, proportional to how many other nodes depend on it. TTR(n,with MaaS)
– time-to-recovery for node, when MaaS backup alternative is available.

Possible metric, which can be used for decision-making in simulation modeling with implemented
MaaS principles, is backup supplier activation rule (3.12):

BSactive =

{
1, if Lt > Lmax or SL < SLmin

0, otherwise
(3.12)

where Lt – current lead time in case of disruption, Lmax – pre-defined lead time threshold, SL – service
level during disruption, SLmin – minimum acceptable service level.

In this case, decision-makers should consider not only lead time but also costs. One might activate
a backup supplier only in case it saves more backlog cost than it costs itself, such a rule is presented in
equation (3.13):

∆Cbacklog ≥ CBS
setup + CBS ×QBS (3.13)

where CBS
setup – one-off cost to activate MaaS backup, CBS – per-unit cost.

For the developed pilot supply chains, metrics and KPIs are used not only for performance evaluation
but also to capture data for MaaS implementation and the results of this implementation within WP6. KPIs
that access network-wide performance can provide results of MaaS implementation in specific nodes,
as well as access orchestrated distributed manufacturing resources, dynamically reassigned production
tasks, and integrated alternative capacities into operational plans. During simulations, these KPIs can
be continuously monitored, allowing assessment of the effect of MaaS integration on resilience.
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Industrial implications: The case of ACCURATE pilots

• Scenarios for stress-test are described in Deliverable 4.1. Experiments in the case of Airbus
Atlantic include political instability (curfew) in the Asian region, storms in the Moluccas
Straits in the Asian region, strikes of workers in Morocco, earthquakes in the Southern
region of France, and floods in areas surrounding Rochefort. The disruptions included
stopping suppliers and extending delivery times. Each of these stress-testing scenarios is
analyzed in terms of the impact of durations of 1, 2, 3, and 4 weeks. Besides, each supplier
is tested individually using two methods:

– Supplier failure of 30-, 60-, and 90-day duration.
– Transportation time increases by 10, 25, 50, and 100% for each of the suppliers.

• In the case of Continental, global events as the Suez Canal blockage, semiconductor crisis,
and material shortage scenario are taken as baseline for stress-testing. The stress-testing
scenarios included the shutdown of several suppliers and the shutdown of the route for
several weeks. Each disruption scenario highlights challenges of transportation bottlenecks,
supplier dependencies, and ecological impacts, all of which influence the whole network.

• Disruption scenarios for Tronico are based on cases of item obsolescence, tension in the
components market, location of suppliers in risk areas (natural disasters, geopolitics), and
breakage in the product workshop with long lead times for components. The work aims
to develop a two-layer simulation model that integrates supply chain dynamics with shop
floor operations while fostering high interaction between optimization (decision-making
processes) and simulation.

Simulation-based approaches

The simulation-based approaches of disruption scenarios build on network-wide simulation models that
operate under certain disrupted conditions. Each pilot supply chain mode is based on different industrial
contexts and is designed as a reconfigurable simulation template.

The majority of disruption simulations are modeled using DES, which enables the modeling of
various shutdowns, transportation delays, and the representation of possible cascading effects of these
disruptions. This approach enables us to observe the crucial impact of the disruption effect on lead times
and certain nodes (Ivanov 2025d).

The integration of MaaS concepts into the stress-testing process enables decision-makers to evaluate
trade-offs among resilience, cost efficiency, and service performance. During simulation runs, various
configurations of the supply chain network can be evaluated, including rerouting materials through
different logistical pathways and alternative capacity usage, making it possible to define an optimal
response in the event of disruptions. This enables organizations to anticipate potential disruption
scenarios before they occur in real life. Through linking MaaS principles with simulation models in
WP6, valuable insights for designing supply chains that are both resilient and adaptively reconfigurable
in the face of unpredictable global challenges will be proposed as a service within the ACCURATE
decision-support framework.
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3.5 Supply chain resilience management approach

Disruption typologies

Recent global disruptions highlight the need to divide risks into various typologies. Following the
Adaptation-Based view (ABW), disruptions can be classified into the following types (Ivanov 2024b):

• Operational,

• Structural, and

• Strategic.

Examples of these types and possible mitigation strategies are presented in Figure 3.10. Implementing
these strategies the high-quality supplier, logistics, and production data is required. Specific data
requirements are described further in Chapter 4. In the context of high-impact disruptions, MaaS enables
large-scale network adaptation through the diversification of capacity sources, distributed production,
and other measures.

Figure 3.10: Disruption typologies

By origin, disruptions can be classified into supplier failures, production failures, transportation
delays/route closure, and demand shocks (Dmitry Ivanov 2020).

• Supplier disruptions are represented by shutdowns, reduction of capacity, operational issues,
quality problems, environmental and geopolitical risks, often affecting downstream operations.
MaaS approach helps to mitigate such disruptions through switching to alternative suppliers.

• Production disruptions include breakdowns of equipment, production plan issues, capacity loss,
process quality issues, maintenance delays or labor shortages, causing cascading effects, inventory
deviations, and breakdown of the production plan.

• Transportation delays and/or route closures are usually represented through blockage or critical
routes, strikes, vehicle or facilities damage. Effects from such disruptions include inventory
shortages, production interruptions, and cascading schedule deviations.

• Market demand shocks are usually represented through demand collapses triggered by pandemics,
regulatory changes, and market demand re-distribution. Such disruptions create an underload or
an overload of the entire network capacity.
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Risk propagation modeling

In complex multi-echelon networks, the effect of disruptions often propagates through interconnected
tiers in non-linear and often unpredictable ways. Simulation modeling allows for capturing network
interdependencies at both the network-wide and node-specific levels. This is done through mapping
network dependencies between suppliers, manufacturers, distribution centers, and customers. At the same
time, the rate at which an incident at one node affects downstream operations, known as the disruption
spread velocity, is measured. Another method is the identification of propagation nodes, whose disruption
disproportionately impacts the network. These network science approaches are especially important for
distinguishing between robustness and resilience (Ivanov 2021).

In a MaaS context, risk propagation modeling provides insights into the distribution of capacity.
For example, if a high-centrality node experiences a disruption, MaaS resources in adjacent tiers can
be preemptively mobilized to contain the spread of delays. Simulation experiments have shown that
propagation dampening can be achieved by introducing strategically located MaaS providers with the
flexibility to handle multiple product types. These providers act as “shock absorbers,” reducing the
severity and duration of network-wide performance drops.

Adaptive strategies and mitigation measures

Adaptive strategies and mitigation measures in case of disruptions of various origins focus on the ability
of the network to respond and reconfigure without a loss of the target performance level. As explained
in Chapter 3.2, these strategies can be considered as either proactive or reactive approaches. Proactive
approach focuses on actions, that can be implemented in the network before the actual occurrence of a
disruption, while a reactive approach is considered as post-disruption actions.

General structural flexibility of the network, which is able to reconfigure in case of disruption, is one
of the great mitigation measures. The possibility of rerouting flows, redistributing volumes, and switching
to alternative suppliers with minimal costs is a significant competitive advantage of the network. In this
case, MaaS implementation allows for finding the best possible alternative with the least cost. One of
the ways to how an exact supplier can be chosen from alternatives, is assigning weights to each supplier,
as described in equation (3.14):

S(j) = ωe × Eligibilityj + ωr × Reliabilityj + ωs ×
1

TBS,j
− ωc × Costj (3.14)

Capacity buffers, provided by parallel production lines and additional transportation volumes, as well
as safety stock, can be considered another mitigation measure. In the case of parallel production lines, it
is possible to reallocate production on these lines in the event of breakdowns. Dynamic reallocation of
production to alternative nodes in the network in the event of a disruption also reduces recovery time in
the event of a disruption. Suppliers’ diversification is another adaptation strategy that requires building a
robust portfolio of alternative suppliers across different regions. Such measures align with bio-inspired
and cybernetic perspectives, emphasizing adaptation, redundancy, and viability as resilience-enabling
mechanisms (Ivanov 2024a).

Information transparency across the network, as well as collaborative data sharing with stakeholders,
allows for providing details of possible risk occurrence at an early stage. This allows us to share possible
risks with stakeholders and mitigate the possible impact of the risks collaboratively. Such a collaborative
approach can be supported through scenario-based planning. Running simulation-based disruption
scenarios in a digital environment enables evaluating the risk in different lengths or circumstances of
occurrence, allowing one to choose from several alternatives the one with the most suitable trade-off
between costs and performance (Dmitry Ivanov 2020).
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Recovery planning

The resilience includes not only survival abilities of the supply chain network during disruptions, but
also restoring the operations to the target performance level. Recovery planning encompasses the period
between the occurrence of the disruption and the network’s stable post-disruption operation. One of the
key metrics for recovery planning is Time-to-recovery (TTR), which measures the average time it takes
to restore the network’s performance to the pre-disruption level. To ensure efficient recovery planning,
all actions have to be divided into short-term, medium-term, and long-term measures (see Figure 3.11).
As elaborated in Chapter 4.3.3, these stress-testing principles are embedded in the DSS, enabling users
to replicate disruption propagation and evaluate alternative resilience strategies.

Figure 3.11: Mitigation measures

Some of these measures could be implemented as a proactive approach. For example, capacity
reallocation options could be defined in advance, finding possible facilities and suppliers that can handle
additional capacity. Pre-approved suppliers, logistics providers, and routes enable saving time in the
event of a disruption and allow for immediate reaction without additional procurement cycles. Inventory
and replenishment prioritization allows for minimizing downstream impact and service level loss. Again,
the use of digital twins for testing alternative strategies in the event of disruptions allows for minimizing
the negative impact on the entire network (Dmitry Ivanov 2020). This will be demonstrated in WP5 and
WP6.

Through the implementation of recovery planning into the network, decision-makers can achieve
better resilience and minimize negative impact. MaaS principles in this case enable the implementation
of a proactive approach, allowing for immediate reaction to emerging risks and reducing the cascading
effect on the entire network.



Chapter 4

DT-based DSS user guidelines

4.1 Data requirements

As explained in Deliverable 4.1, primary data requirements from industrial partners include data on
inbound logistics, outbound logistics, Bill of Materials (BoM), production flow, and resources. Primary
data is examined further as follows:

• BoM data: Products, raw materials, consumption rate.

• Suppliers data: The definition of suppliers, sourcing policy, analysis of the ordering processes,
Minimum Order Quantity (MOQ), lead time, costs.

• Customer data: Demand, delivery process.

• Production data: Production path, bottlenecks of machines, total capacity.

To make the data suitable for further use, it must be analyzed and transformed into a DT-based
DSS-applicable format.

During the transformation stage of supplier data, materials are mapped with possible sources. Anal-
ysed materials are defined in terms of single- and multiple-sourcing policies. The main idea of the
sourcing policy, which is taken into account, is that in the case of multiple sources, the sourcing ratio is
based on historical inbound logistics data. There is an opportunity for improvement in dynamic sourcing
based on selected KPIs that can be implemented. During the transformation stage of MRP data, the flow
of the ordering process is defined. The product demand is transformed into material requirements. In the
material requirement stage, the data is divided into material data and material consumption data. Material
requirement data is being further transformed for release. At this stage, data of supplier, lead-time, MOQ,
ordering cost, holding cost, and stock-out cost are defined. During the transformation stage of customer
data, synthesis demand data for simulation is developed from historical demand data. As highlighted
in Chapter 3.5, without robust and well-structured data, risk propagation and resilience management
approaches cannot be effectively applied.

4.2 System architecture and configuration

Recently, the architecture of digital twin support systems has evolved from isolated models to intelligent
decision-support systems. Conceptual framework for digital twin implementation divides the supply
chain into structural, functional, and behavioral dimensions. Structural models capture the network
topology and interdependencies, functional models represent processes and resource flows, and be-
havioral models describe system dynamics under disruption. Together, these models form the digital
foundation upon which decision-support systems can operate.
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Digital twins should not be monolithic systems, but rather ecosystems of interconnected modules,
including data integration platforms, simulation engines, optimization solvers, and scenario managers.
Interactions between these modules, with the ability of the modules to reconfigure, allow the digital twin
to remain adaptable to different industries and risk contexts.

The concept of the intelligent Digital Twin (iDT) framework introduces the integration of detection,
prediction, and prescription instruments, as well as self-learning system capabilities. In the case of
intelligent digital twins, decision support is provided by Artificial Intelligence (AI) and human agents to
transform simulation, optimization, and stress-test results into actionable strategies. IDT contributes to
proactive management and the risk of disruptions.

Architecture in this case includes three layers:
• Physical space: where real supply chain assets and flows operate,

• Cyber space, which hosts digital models, stress test engines, and risk assessment modules,

• Collaborative decision space: where humans and AI evaluate scenarios and develop strategies.
The synergy of these modules and intelligent digital twins implementation ensures that supply
chain ecosystems can achieve both structural viability and adaptive resilience under uncertainties.

During the DT development, there are several generalized stages, which are illustrated in Figure 4.1.
These stages include collecting and preparing the data, inputting this data into the model, performing
simulation and optimization experiments under baseline conditions, conducting stress-testing scenarios,
and analyzing data obtained from the experiments. Accuracy at every stage of DT development enables
the provision of accurate experimental results, allowing for the integration of results and managerial
recommendations directly into the real system. As mentioned in Chapter 3, such an approach supports
stress-tests integration and resilience management approaches integration.

Figure 4.1: Digital Twin (DT) development path

4.3 Capabilities of the proposed decision-support system

4.3.1 Design mode: Conventional and MaaS-based

The decision support system combines structural and functional behaviours of the supply chain in
combination with detection, prediction and prescription analytics and human support capabilities. This
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enables the DSS framework to support traditional SC planning methods and integrate them with MaaS
implementation, allowing for short-, mid and long-term planning.

The comparison of conventional and MaaS-based design is illustrated in Figure 4.2.
Conventional design focuses on network configuration problems, including facility location, capacity

allocation, supplier selection, and inventory policy definition. Alternatives for decision-making are the
results of simulations and optimizations, which allow for balancing the trade-off between costs and KPIs.

MaaS-based design extends decision-making capabilities beyond traditional aspects and incorporates
flexible production strategies and reconfigurable SC capabilities. The MaaS approach allows the use
of backup suppliers, additive manufacturing providers, or logistics services, which can be dynamically
reconfigured if needed. The integration of the MaaS concept into conventional design enhances resilience
by facilitating the sharing, reconfiguration, and relocation of assets in response to disruptions.

Figure 4.2: Conventional and MaaS-based design models

4.3.2 Operations management mode

At the tactical and operational levels, the DSS enables ongoing monitoring, coordination, and control of
supply chain activities. This includes collecting real-time data from ERP and other systems, logistics
providers, and other stakeholders in order to update the digital twin constantly. Through constant data
updates, DT allows for real-time stress-testing and evaluating various strategies.

At the tactical level, the DSS supports decisions such as production planning, capacity allocation,
transport routing, and inventory positioning across multiple facilities. The DSS integrates demand
forecasts, supplier performance data, and logistics constraints into optimization models to propose
schedules and allocations that balance cost-efficiency with service levels.

At the operational level, the DSS enables short-term control of processes. Through receiving real-
time data, decision-makers can track the reaction of processes to disruptions or fluctuations of different
origins. This allows managers to implement interventions such as rerouting shipments, expediting orders,
or reassigning the workforce and equipment. Conducting stress-tests also helps to anticipate ’what-if’
analysis to anticipate possible cascading effects on the whole supply chain.
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4.3.3 Stress-testing mode

The stress testing mode of the DSS is designed to evaluate how a supply chain ecosystem performs
under extreme, unexpected, or deeply uncertain conditions. Stress testing begins with the identification
and modelling of disruption scenarios. These may include natural disasters, facility shutdowns, trade
conflicts, or sudden demand surges. Building on the structural models of the digital twin (Ivanov, 2025),
the DSS maps the network topology to identify critical nodes, dependencies, and bottlenecks. The
functional models then simulate how resources and flows are constrained under disruption, while the
behavioral models trace the dynamic ripple effects of failures across multiple echelons and time horizons.
Key performance indicators include time to recovery (TTR), service levels (SL), costs, and other supply
chain viability indicators.

Conducting stress-testing scenarios is used not only to define vulnerabilities but also to research
suitable mitigation and adaptation strategies. The DSS enables the assessment of various strategies of
different origins, such as supplier diversification, facility redundancy, dynamic rerouting, and inventory
allocation, among others, to find a suitable trade-off between costs and resilience.

Storing information about previous disruptions and analyzing insights from previous experiences
allows DSS to prepare for future challenges. DSS provides a learning capability for DT behavior
in various situations. These learning capability allows building a data-based model of scenarios and
responses to these scenarios, creating a memory to enhance the adaptability of the whole network.
Insights, driven by these memories, enable decision-makers to develop strategies that strike a suitable
balance between costs and resilience. In this sense, DT is not only a diagnostic tool but also a strategic
enabler, aligning supply chain design and operations with long-term objectives.

4.4 Dashboards, managerial implications and interpretation of results

The capabilities outlined in Chapter 3 will be embedded within a Digital Resilient Supply Chain Ecosys-
tem, as depicted in Figure 4.3 and further developed in workpackages WP5 and WP6. This ecosys-
tem integrates data, advanced analytics, simulation, and decision-support functionalities into a coherent
framework. It bridges the cyber layer (encompassing risk profiling, supply chain mapping, stress-testing,
and marketplace functionalities) with the physical supply chain, while also incorporating a dedicated
human–machine collaboration environment that provides interactive resilience dashboards for end-users.

Supply Chain Model, one of the main contributions of the WP4, lies in the orchestration of multi-tier
supply chain mapping, risk profiling, and stress-testing digital twins within a unified environment. The
outputs are directly channelled into the Decision Support System (DSS) and made accessible through
end-user visualization interfaces. Within this context, ACCURATE emphasizes the importance of a
proactive resilience strategy, notably through the identification of nexus nodes and critical paths, which
further enables the integration of Manufacturing-as-a-Service (MaaS) principles in WP6.

4.4.1 API connection

An API has been developed to support two generalized models for simulating inventory dynamics and
order generation, incorporating the capability to represent two generic categories of disruption events.
The resulting model will be made available through the ACCURATE marketplace, thereby fostering
reuse, interoperability, and collaboration with external developers. Furthermore, this API provides
a foundation for the development of a co-simulation platform and additional solution modules to be
deployed within the ACCURATE project.

The API has three main endpoints:

• Simulation results: Main endpoint for simulation results, as illustrated in Figure 4.4,

• Weekly Simulation Details: Steps of simulation calculation by week, as illustrated in Figure 4.5,
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Figure 4.3: Digital Resilience Supply Chain Ecosystem

• Material Simulation Details: Steps of simulation calculation by material, as illustrated in Fig-
ure 4.6.

Figure 4.4: API endpoint 1: Simulation results
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Figure 4.5: API endpoint 2: Simulation details per period of time (e.g., week)

Figure 4.6: API endpoint 3: Simulation details by material

4.4.2 One-integrated supply chain resilience software

To integrate the networks of different levels of detail across the analytics layer, simulation, and the
optimization layer, a dedicated software is developed in ACCURATE based on capabilities described
in Chapter 3. The software analyzes internal supply chain data within the product-level network and
the process-level network. For the deep-tier network investigation, users can acquire data from the AC-
CURATE marketplaces for analytics. The software enables the rapid generation of disruption scenarios
during interactions with the network.

Beyond the data analysis, the designed tool is capable of simulating one or more disruption events
simultaneously. The user can quickly adjust the disruption event scenario through interface without the
need to generate more events, which reduces modeling efforts.

For decision support, the dashboard highlights key performance indicators, including fill rate and
revenue. Fill rate is one of the most popular indicators in supply chain management. Revenue provides
insights into the health of the supply chain, encompassing both financial and operational aspects. Clear
visualizations and comparison features make it easier for users to interpret complex results.

The data management interface of the developed software is illustrated in Figure 4.7, which forms the
foundation of these capabilities. Users can organize and monitor product- and process-level networks. It is
possible to import, edit, and visualize supply chain data such as product IDs, material IDs, consumption
rates, and plant names. The data management interface creates a foundation for future analysis and
optimization.

The firm-level network is illustrated in Figure 4.8. The visualization highlights connections between
suppliers and customers. Figure 4.8 illustrates the complexity of the supply chain interdependencies,
where firms are positioned in different layers according to their role in the network. In the right panel,some
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Figure 4.7: Data management

additional information about suppliers. The tool provides a ’Nexus Node Prediction’ function, which
allows for the identification of critical nodes within the network that may create vulnerabilities or
bottlenecks.

Figure 4.8: Firm-level network

The product-level network is illustrated in Figure 4.9. The visualization highlights the flow of
materials within the supply chain. It shows flow connections between suppliers, materials, products,
and customers. This view enables users to assess dependencies and identify critical materials within the
network. By providing both structural and quantitative insights, the product-level network visualization
facilitates informed decision-making for more effective resilience resource allocation.

A field for scenario generation is illustrated in Figure 4.10. While interacting with the network
analysis, one can conveniently stress-test the network by generating a scenario with information about
the target of disruption, the type of disruption, and the delay duration. Disruption types could be modeled
as either capacity reduction or time delay in their general form.

The process-level network is illustrated in Figure 4.11. The visualization shows how customers,
products, materials, and suppliers reveal dependencies across the network. Showing the links between
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Figure 4.9: Product-level network

Figure 4.10: Quick Scenario Generation

clusters highlights the complexity of the interconnections, where the cascade effect from the disrup-
tions can affect the whole supply chain. Process-level network visualization supports supply chain
transparency, enabling the identification of possible bottlenecks in shop-floor operations.

The simulation center is presented in Figure 4.12. The tool enables the analysis of supply chain
resilience across nodes and different scenario configurations. In the example, the scenarios of a five-
week disruption at node BI and an eight-week disruption at node WAEL are modeled. Through various
disruption scenarios, one can analyse the potential impact of delays and identify vulnerabilities. The tool
enables proactive resilience planning and evaluation of possible mitigation strategies.

The SC resilience dashboard is illustrated in Figure 4.14. The dashboard summarizes the impact
of disruptions compared to baseline scenarios. In the example, there is a decline in KPIs, specifically
in fill rate and revenue. Additionally, resilience metrics, including Time-To-Survive, Time-To-Adapt,
and Time-To-Recover, are provided. Through the analysis of presented metrics, the dashboard enables
decision-makers to evaluate vulnerabilities, compare potential disruption scenarios, and define suitable
mitigation strategies.
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Figure 4.11: Process-level network

Figure 4.12: Simulation center
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Figure 4.13: SC Resilience Dashboard (1)

Figure 4.14: SC Resilience Dashboard (2)



Chapter 5

Conclusions and future directions

This deliverable consolidates the conceptual and methodological advances of WP4 into a coherent Digital
Twin–based Decision Support System (DT-DSS) for resilient supply chain design, planning, and stress
testing. The main contributions can be summarized as follows:

• Methodological integration: Developed a DT-based DSS architecture that combines discrete-
event simulation, multi-criteria decision analysis, and optimization. This enables the modeling
of multi-echelon supply chain networks, assessment of disruption propagation, and evaluation of
resilience strategies under uncertainty.

• MaaS-enabled supply chain design and planning: Introduced decision-support models that
leverage Manufacturing-as-a-Service (MaaS) principles, including decentralized resource orches-
tration, dynamic pricing, and flexible scheduling. These models extend conventional design
frameworks by integrating backup capacity, shared inventories, and distributed decision-making.

• Stress-testing and resilience assessment: Implemented generalized disruption scenario mod-
elling and simulation pipelines to quantify resilience using KPIs such as service level, lead time,
time-to-survive, and time-to-recover. The methodology was validated with Airbus Atlantic, Con-
tinental, and Tronico pilots, demonstrating its applicability across diverse industrial contexts.

• Decision-support tools and software: Delivered (i) an API-based solution supporting general-
ized supply chain models (make-to-stock and make-to-order) and two generic disruption types,
fostering interoperability and reuse, and (ii) a standalone integrated software embedding analytics,
simulation, and dashboards into a unified resilience platform.

• Managerial implications: Provided guidelines for data requirements, configuration, and inter-
pretation of results, together with interactive dashboards for nexus-node identification, disruption
scenario generation, and resilience KPI monitoring. These tools support both proactive and
reactive disruption management in line with industrial needs.

Overall, Deliverable 4.2 advances the state of the art by moving from fragmented optimization models
to an integrated DT-DSS framework that operationalizes resilience strategies in MaaS-enabled supply
chains.

Future research and development will focus on:

• Scalable heuristics and metaheuristics for large industrial instances,

• Integration of dynamic pricing mechanisms into MaaS scheduling models within WP6,

• Strengthened interoperability with WP5 (data spaces) and WP6 (MaaS decision-support frame-
work),
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• Validation through extended industrial pilots in electronics, aerospace, and automotive supply
chains in WP7.

These next steps will reinforce the objectives of the ACCURATE project in terms of resilience
and viability to unforeseen events (in WP6), reconfiguration and flexibility of production systems (via
use-cases in WP7), digital and green transition of value chains (in WP5 and WP6), MaaS (in WP5 and
WP6), ecosystem acceptance and adoption (in WP7 and WP8).



CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 53

Notes
1. The BANI World, for IRSM 2022: https://www.youtube.com/watch?v=stBdyNBwfpU&ab_channel=
JamaisCascio

2. Manufacturing as a Service: Technologies for customized, flexible, and decentralized production on demand:
https://www.horizon-europe.gouv.fr/manufacturing-service-technologies-customised-flexible-and-decentralised-production-demand-made

3. Manufacturing as a service for the EU’S twin transition until 2040 (MASTT2040): https://www.mastt2040.
eu/

https://www.youtube.com/watch?v=stBdyNBwfpU&ab_channel=JamaisCascio
https://www.youtube.com/watch?v=stBdyNBwfpU&ab_channel=JamaisCascio
https://www.horizon-europe.gouv.fr/manufacturing-service-technologies-customised-flexible-and-decentralised-production-demand-made
https://www.mastt2040.eu/
https://www.mastt2040.eu/


Appendix A

Manufacturing-as-a-Service Scheduling
Problems

A.1 Bi-objective mixed-integer programming formulation

Given a set of n service orders (i.e., tasks) j ∈ J and a set of m ressource providers (i.e., machines)
i ∈ M, the MaaS platform coordinates the assignment and sequence of tasks to the most qualified
machines. Each task j has a due date dj , a weight wj , a processing time pij , and a delivery time qij for
each machine i. All tasks are available at time zero, each task j needs to be processed by one and only
one machine without interruption, and each machine i can handle at most one task at a time. The delivery
time qij occurs immediately after completing the task j on the respective machine i. The optimization
criterion is the minimization of the total weighted tardiness

∑
wjTj , where Tj = max{Cj − dj , 0} and

Cj is the completion time defined as the time by which a task reaches the customer.

min T (A.1)
max E (A.2)∑

i∈M
yij = 1 j ∈ J (A.3)

sk ≥ sj + pij −H(3− yik − yij − zjk) i ∈M, j, k ∈ J , j ̸= k (A.4)
sj ≥ sk + pik −H(2− yik − yij + zjk) i ∈M, j, k ∈ J , j ̸= k (A.5)
Cj ≥ sj + (pij + qij)yij i ∈M, j ∈ J (A.6)
Tj ≥ Cj − dj j ∈ J (A.7)
Tj ,Cj ≥ 0 j ∈ J (A.8)
T ≥ f(Tj) (A.9)
E ≤ g(eij) (A.10)
yij , zjk ∈ {0, 1} i ∈M, j, k ∈ J

The mixed-integer linear formulation includes binary assignment variables yij of task j to machine
i and precedence variables zjk between tasks j and k. Variables sj denote the start time of task j. The
model is formulated by expressions (A.1)- (A.10). Constraints (A.3) state that each task must be assigned
to exactly one machine. Disjunctive Constraints (A.4) and (A.5) manage the precedence relationship
between tasks on machines. Task completion times and tardiness values are computed according to
Constraints (A.6)-(A.8). Constant H is an upper bound on task start times and can be computed by:

H = max
i∈M

{∑
j∈J

pij −min
j∈J

pij

}
In Constraints (A.9) and (A.10), the functions f(Tj) and g(eij) represent the tardiness (resp.,

eligibility) that are minimized (resp., maximized) in expression (A.1) and (A.2), respectively. Tardiness
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and eligibility summary measures can be different mathematical expressions of the individual delays Tj

and the eligibility score eij , the main measures are presented in Table A.1.

Table A.1: Main optimization criteria

Function Measure Description

f(Tj)

∑
j∈J

wjTj Total Weighted Tardiness

Tj , ∀ j ∈ J Maximal Tardiness

g(eij)

∑
i∈M

∑
j∈J

eijyij Total Eligibility∑
i∈M

eijyij , ∀ j ∈ J Minimal Eligibility

For both objectives, measures can be considered globally or individually by task. In the former, more
flexibility is allowed and a greater collaboration between the actors is considered, which is more natural
in a type of MaaS platform that manages only its own equipment or a consortium of companies. In the
second, it considers all tasks independently, which is more appropriate in the context of a MaaS platform
with different industries and competing actors.

A.2 Constraint Programming Formulation

Another constraint programming-based formulation for the MaaS scheduling problem is proposed. In
this context, interval variables are considered, which are defined as a finite domain of solutions, which,
for scheduling problems, are defined directly with a value that determines the start, length, and end of
the respective interval. For our problems, let xij be an optional interval variable of executing job i on
machine i with duration of pij . Then, considering the problem with both objectives individually by tasks,
the problem can be formulated as follows:

min
∑
j∈J

Tj

s.t. Alternative(x1j ,x2j , ...,xmj) j ∈ J (A.11)
noOverlap(xi1,xi2, ...,xin) i ∈M (A.12)∑
i∈M

eij ∗ presenceOf(xij) ≥ θ j ∈M (A.13)

Tj ≥ endOF (xij) + presenceOf(xij) ∗ qij − dj j ∈ J (A.14)
Tj ≥ 0 j ∈ J (A.15)

A.3 Bi-objective integer program with fixed assignment and external con-
firmation: Online settings

Let us now extend the offline formulation to the online settings, where tasks arrive dynamically over
time with release times rj . At each decision point t, only tasks satisfying rj ≤ t are known and eligible
for assignment. The platform must incrementally assign these available tasks to machines and determine
their sequence, without full knowledge of future task arrivals.
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We also extend the online MaaS scheduling problem by allowing reassignment of tasks that have
not yet started and incorporate a realistic confirmation mechanism, defined as follows: After tentative
assignments are made at decision time t, the providers may confirm or reject each assigned task.
Confirmed tasks become fixed and immutable in the following periods, while rejected tasks return to the
set of pending ones for future reassignment. At each decision point t, the task set is defined as:

Jt = J new
t ∪ J pending

t

where:

• J new
t = {j ∈ J | rj = t} are newly released tasks,

• J pending
t = {j ∈ J | rj < t, sj > t, δj = 0} are tasks not yet started and not confirmed.

Let us define:

• ytij ∈ {0, 1}: Assignment of task j to machine i at time t,
• zjk ∈ {0, 1}: Sequencing variable between tasks j and k,
• sj , Cj , Tj : Start time, completion time, tardiness of task j,
• eij ∈ [0, 1]: Indicator variable, which indicates the compatibility between machine i and task j.
• δj ∈ {0, 1}: Confirmation indicator (1 = confirmed and fixed, 0 = subject to future reassignment),
• s̄j , C̄j : Fixed start/completion times for confirmed tasks.

The integer programming formulation is:

max α
∑
i∈M

∑
j∈Jt

eij − β
∑
j∈J

wt
jTj (A.16)

s.t.
∑
i∈M

ytij = 1 ∀j ∈ Jt (A.17)

sk ≥ sj + pij −H(3− ytik − ytij − zjk) ∀i ∈M, j, k ∈ Jt, j ̸= k (A.18)
sj ≥ sk + pik −H(2− ytik − ytij + zjk) ∀i ∈M, j, k ∈ Jt, j ̸= k (A.19)
Cj ≥ sj + (pij + qij)y

t
ij ∀i ∈M, j ∈ Jt (A.20)

Tj ≥ Cj − dj ∀j ∈ Jt (A.21)
Tj ,Cj ≥ 0 ∀j ∈ Jt (A.22)
sj ≤ s̄j +M(1− δj) ∀j ∈ J (A.23)
sj ≥ s̄j −M(1− δj) ∀j ∈ J (A.24)
Cj ≤ C̄j +M(1− δj) ∀j ∈ J (A.25)
Cj ≥ C̄j −M(1− δj) ∀j ∈ J (A.26)
ytij , zjk, δj ∈ {0, 1} ∀i ∈M, j, k ∈ J (A.27)

where α and β are weighting coefficients.
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Table B.1: Lot sizing problem: A state-of-the-art review

References
Uncertain demand Modeling approach Extensions Time horizon Decision strategy Sol. approach
T V T&V P S F I Backlogging Lost sales Time window finite ∞ rolling static dynamic both SP CCP RP

Burstein, Nevison, and
Carlson 1984

✓ ✓ ✓

Gioia, Fadda, and Brandi-
marte 2024

✓ ✓ ✓ ✓ ✓ ✓

Nevison 1985 ✓ ✓ ✓

Akartunalı and Dauzère-
Pérès 2022

✓ ✓ ✓ ✓

Chotayakul and Punyan-
garm 2017

✓ ✓ ✓ ✓

Tarim and Kingsman 2004 ✓ ✓ ✓ ✓ ✓

Sereshti, Adulyasak, and
Jans 2024

✓ ✓ ✓ ✓ ✓ ✓ ✓

Rahmani, Hosseini, and
Sahami 2025

✓ ✓ ✓ ✓ ✓ ✓ ✓

Metzker et al. 2021 ✓ ✓ ✓ ✓

Mula, Peidro, and Poler
2010

✓ ✓ ✓ ✓

Forel and Grunow 2023 ✓ ✓ ✓ ✓ ✓ ✓ ✓

H. Gong, Y. Zhang, and
Z.-H. Zhang 2023

✓ ✓ ✓

Sox 1997 ✓ ✓ ✓ ✓ ✓ ✓

ACCURATE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: T: Timing; V: Volumn; T&V: Timing & Volume; P: probabilistic formulation; S: scenario formulation; F: fuzzy logic formulation; I: interval arith-
metic formulation; SP: two/multi-stage stochastic programming; CCP: chance-constrained programming; RP: robust programming; FP: fuzzy mathematical
programming
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