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Public Summary  
 

This deliverable is a part of the ACCURATE project which aims to increase the competitive abilities of European 

manufacturing through manufacturing-as-a service (MaaS), digital twins (DTs), and decision support systems 

(DSS).  

One of the primary objectives in ACCURATE is investigating the resilience of MaaS systems during disruptions 

and the impact of such disruptions on the  short- and long-term sustainability of such systems. Work Package 

(WP) 3 aims to addresses this research question, within the scope of individual nodes (i.e., manufacturing 

facilities) within a MaaS system. The overall ambition in WP 3 is to deliver the knowledge and tools for 

supporting the adaptation and reconfiguration of production processes within MaaS nodes from the 

perspective of resiliency, sustainability, and human-centricity. WP 3 will enable the creation of create DT 

modelling frameworks and associated DSS, with the above goals supporting MaaS nodes to perform 

simulation-based performance prediction, robust optimisation, and consequently responsive control of 

production processes.  

This deliverable covers reports the progress in WP 3 towards establishing a conceptual basis for measuring 

and subsequently optimising the resiliency and sustainability performance of production processes and 

establishing the functional requirements for developing production-level simulation models within MaaS 

nodes. The deliverable covers work performed in Task 3.1, Task 3.2, and partially in Task 3.3. Results from 

these tasks, coupled with results from WP 2 and WP 7, have established a basis for quantitively assessing 

resilience, sustainability, and circularity performance for MaaS nodes, considering factors including, 

stakeholder priorities, data collection burdens, and applicability to simulation-based modelling. Results have 

also identified specific indicators to measure the above performances for each pilot in the ACCURATE project. 

Methodologies and results reported in this deliverable will be subsequently implemented in the ACCURATE 

project in the form of discrete-event based simulation (DES) models of capable of measuring resilience, 

sustainability, and circularity performance of production lines for MaaS nodes under nominal operating 

conditions and under disruptions. These DES models will be used as a  basis for developing production-level 

DT models.  
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1 Introduction 

1.1 Project Context 

The ACCURATE project vision is to realise manufacturing-as-a-service (MaaS) value chains whose capacity, 

profitability, and sustainability are robust to longer- and shorter-term exogenous disruptions. The ACCURATE 

mission is to deliver a federated MaaS framework, data space and ecosystem, powered by multi-level digital 

twin models of MaaS value chains, to enable a collaborative, human-centred decision support system (DSS) 

for robust planning, resilient operation and responsive value networks and industrial systems recovery. The 

concepts, methods, and tools developed in the ACCURATE project will be applied, demonstrated and 

validated in three pilot partners 

1.2 Deliverable Scope and Key Outcomes 

The scope of this report is to present the work done as a part of Work Package (WP) 3, Digital Twins 

Supporting MAAS Production Adaptation. The overall ambition in WP 3 is to deliver the knowledge and tools 

for supporting the adaptation and reconfiguration of production processes within MaaS nodes (individual 

manufacturing facilities) from the perspective of resiliency, sustainability, and human-centricity. The work 

reported in this deliverable covers results from Task 3.1, Task 3.2, and partially from Task 3.3. 

First, the deliverable reports results on the functional requirements for developing the ACCURATE digital twin 

(DT) models across the nine use cases (UCs) identified in ACCURATE. In this regard, the integration and 

interoperability framework has been established, defining technical requirements for DTs, including 

structured outputs, containerisation, and data exchange responsibilities. Model requirements have been 

developed to capture process dynamics, assess disruptions, and support decision-making based on key 

performance indicators (KPIs). Scenario configuration capabilities have been examined to facilitate disruption 

analysis, time-scale planning, and performance evaluation. Additionally, requirements for assessing 

sustainability and resilience have been established, ensuring alignment with production system 

requirements. 

Next, the requirement and data required for developing and usage of resilience-oriented production-level 

simulation models based on discrete event simulation (DES) have been established across the three different 

pilot partners. The development and implementation of production models across various cases have been 

structured around shared data sources, including products, bills of materials, processes, resources, material 

handling, and production planning.   

Simultaneously, the methodology for quantifying resilience, circular economy (CE), and sustainability 

performance was investigated, with the goal of coupling such indicators to the above simulation model. 

Indicators were identified using a scientific literature review, and narrowed down based on applicability to 

individual nodes in MaaS systems as well as information provided by the ACCURATE pilot partners on data 

availability, measurement complexity, and internal priorities. Two indicator screening tools were created to 

screen for resilience and circularity indicators. An ontology was also created to integrate the selection of 

circularity, sustainability, and resilience indicators into a manufacturing as a service context.  

Finally, this deliverable lays out a recommended framework for resilience, circularity, and sustainability 

assessment for the nine distinct UCs across  the three ACCURATE pilot partners.  
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1.3 Deliverable Structure 

This report is split into six additional chapters, as follows. 

• Chapter 2: Functional Requirements Engineering.  

• Chapter 0: Circular Economy Circularity Indicators for a MaaS System 

• Chapter 4: Resilience Indicators for a MaaS System 

• Chapter 5: Sustainability Indicators for a MaaS System 

• Chapter 6: Ontologies for Architecting Circular and Sustainable Manufacturing-as-a-Service System 

• Chapter 7: Circularity and Sustainability Assessment Framework for a MaaS System 

 

In Chapter 2, the functional requirements for the DTs are discussed. This discussion includes integration and 

interoperability between models, functional requirements for the models and an overview for the planned 

models for each ACCURATE pilot partner. Results from Chapter 2 are used as a basis for formulating the 

requirements for resilience, circularity, and sustainability assessments in Chapters 0-5. 

 

In Chapter 0, an overview of a circularity indicator screening tool is presented, along with consideration of 

the circularity indicators presented for the UCs in the ACCURATE project. These indicators are linked to 

ACCURATE UCs in Chapter 7. 

 

Chapter 4 presents a literature review on resilience indicators and details an indicator selector tool that aids 

the user in choosing resilience indicators for their own scenario. These indicators are linked to ACCURATE UCs 

in Chapter 7. 

 

Chapter 5 provides an overview of the methodology for estimating environmental and sustainability 

indicators using the life cycle assessment framework, and their applicability to MaaS nodes. These indicators 

are linked to ACCURATE UCs in Chapter 7. 

 

Chapter 6 discusses a novel ontology model created in the ACCURATE project for assessing circularity and 

sustainability in MaaS systems. The ontology models were developed from the assessment methodologies 

discussed in Chapters 5-6 and will be used for eventually extending ACCURATE matchmaking services.  

 

Chapter 7 provides a conceptual framework for future work on the DTs models, specifically highlighting 

indicators for circularity and sustainability assessment for each UC. It builds on results from Chapters 0-5 

which identify a general methodology for screening indicators for resilience, circularity, and sustainability 

performance, as applicable to individual nodes in MaaS systems.    
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2 Functional Requirements Engineering 
In order to achieve the main goal of the project the Digital Twins must integrate across multiple scales, from 

individual manufacturing processes to entire supply chain networks. This requires well-defined functional 

requirements that ensure interoperability, adaptability, and reliability. Chapter 2 outlines these critical 

requirements, establishing the foundation for the development and implementation of DT models across 

ACCURATE's pilot cases. 

This chapter is structured in three main sections: 

1. Integration and Interoperability Requirements – This section defines the essential requirements for 
seamless communication between DT models and external systems. As DTs must interact with various 
data sources, simulation models, and decision-support tools, standardization in structured output 
delivery, orchestration, containerization, and data exchange is necessary. 

2. Models needed to be developed – This section presents the output of Task 3.1, detailing the 
identified models that need to be developed and their mapping to the relevant use cases where their 
added value will be demonstrated. 

3. Resilience-oriented production models – This section details how DT models will incorporate 
resilience mechanisms into production planning. By simulating disruptions, assessing recovery 
strategies, and optimizing reconfiguration processes, these models contribute to maintaining 
operational stability even under uncertain conditions. The chapter highlights key resilience-related 
KPIs and the methodologies for evaluating them. 

2.1 Integration and Interoperability Requirements 

To ensure seamless integration and interoperability, the models, DTs must support the following 

requirements: 

1. Structured Output Delivery: 

• Models should deliver outputs in a structured format compatible with other user 
tools/models as requested by the client tool. 

2. Orchestration and Status Declaration: 

• Models intended for use in orchestration with other systems must declare their status to 
facilitate automatic data exchange. 

3. Invocation and Execution Requirements: 

• Containerised Deployment: 
i. If a DT is to be invoked by an external function or client, it should be provided as a 

container that includes all dependencies required for its execution. 

• Configurable Data Exchange Location: 
i. DTs should support access through a configurable data exchange location for 

communication with external functions or clients. 

• Control Bus Implementation: 
i. DTs should implement a control bus to support single-point evaluation, streamlining 

integration with external systems. 
4. Data Exchange Responsibility: 

• Black Box DTs: 
i. Responsible for managing data exchange with the data sources required for their 

execution. 

• White Box DTs (e.g., DSS): 
i. The client (e.g., DSS) is responsible for orchestrating data exchange with the data 

sources required for the DT's execution. 
 



ACCURATE                                                       13 

 
 

   

 

2.2 Models needed to be developed 

The models developed to support the adaptation and reconfiguration of production processes are designed 

to: 

• Accurately capture and simulate critical dynamics at both the process-chain and higher-level nodes. 

• Incorporate key events and disruptions across multiple nodes and hierarchical levels using a 
parametric approach. 

• Enable quantitative assessment of the impacts of both known unknowns and unknown unknowns 
on output performance and system resilience. 

• Provide actionable insights for decision-making through sustainability-focused and performance-
oriented KPIs. 

Functional Requirements 

Scenario Definition and Configuration 

Models must enable users to configure and change inputs for scenario creation. These scenarios should 

support: 

1. Disruption Event Introduction: 

• Address disruptions and their impacts across hierarchical levels, including: 

• Machine/Equipment Level: Variables such as machine speed, reliability, scheduled 
stops, setups, energy consumption, and other resource usages. 

• Process-Chain Level: Incorporate aggregated impacts from equipment-level 
variables. 

2. Time Scales and Horizons: 

• Support planning across different time scales: 

• Short-Term (Days/Weeks): Analyse initial production status, machine condition, 
deadlines, and potential delays. 

• Medium-Term (Weeks/Months): Evaluate medium-term production efficiency and 
planning adjustments. 

• Long-Term (Months/Years): Assess average productivity and long-term performance 
during design and reconfiguration phases. 

 Output and Result Requirements 

Models must provide robust output capabilities to meet various performance evaluation needs: 

1. Quantitative Measurements: 

• Assess and measure performance under specific scenarios defined by user inputs. 
2. Key Performance Indicators: 

• Supply a comprehensive list of available KPIs to ensure the model aligns with task 
requirements. 

• Compute performance metrics across the following categories: 
i. Process-Chain Level: 

• KPIs such as availability, production rate, equipment utilisation, work-in-
progress, lead time, and resilience metrics. 

ii. Circularity and Sustainability: 

• Provide methods to directly and indirectly compute sustainability-related 
KPIs. 

 

A clear overview of the models developed under the ACCURATE project, including their implementation, 

interaction, and demonstrated value in the UCs, is presented in the table below: 
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Pilot 
Use-case  

(All use-cases are described in 

detail in D7.1) 

Model type/ 
Methodology  

(Indicates the category of 

models used) 

Explanation Methodology 
(Refers to specific models or tools 

applied) 

Expected Outcome/Benefits 
(Purpose of applying each model) 

Task under which the model has been 
identified/developed  

(Responsible task for developing the model) 

AIRBUS 
ATLANTIC 

UC1: Supply Chain (SC) 
disruption monitoring by DT-
based simulation  

DES SC stress test a part 
Measure performance impact of 
defined set of disruptions 

T4.1 SC components and process 
definition & Data collection 
T4.2 SC stress-testing simulation 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

UC2: SC design support by 
identification of hidden 
critical suppliers/material  

ABS, DES, and Network 
science 

SC stress test for a part with 
systematic experiment design 
features 

Identify critical nodes for 
unknown disruptions 

T4.1 SC components and process 
definition & Data collection 
T4.2 SC stress-testing simulation 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

UC3: SC design 
recommendations for better 
absorption and swift 
adaptation  

Analysis methodology, 
Optimisation 

Coordinate the SC and 
manage risk 

Enhance multi-criteria decision-
making (MCDM) in supplier 
selection by incorporating 
sustainability, quality, reliability, 
resilience, stability, and other 
critical factors 

T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

UC4: Integrated assessment 
of supply and internal value 
chains by means of DTs 

Analysis methodology, 
Probability and statistics, 
Optimisation 

Manage demand, solve lots of 
size problem, integrate 
external and internal SCs 

1. Demand-driven material 
requirements planning (MRP) to 
smoothen the deliveries (e.g., 
via thresholds, summaries of 
daily consumption, parametric 
models for replenishment) 
2. Add buffers to strategic critical 
points of the supply and internal 
production workflow 
3. Include prediction on delivery 
dates to anticipate missing 
components 

T4.3 Optimisation of material flow in 
MaaS SC 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

 DES 
Capture both material flow 
and disruptions at SC and 
shopfloor level 

Enhance decision making by 
considering both SC level and 
shopfloor level factors 

T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 
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Pilot 
Use-case  

(All use-cases are described in 

detail in D7.1) 

Model type/ 
Methodology  

(Indicates the category of 

models used) 

Explanation Methodology 
(Refers to specific models or tools 

applied) 

Expected Outcome/Benefits 
(Purpose of applying each model) 

Task under which the model has been 
identified/developed  

(Responsible task for developing the model) 

TRO 

UC1: SC stress-test and 
optimisation: Inventory 
management under 
fluctuating demand forecasts 

DES and ABS 
Simulate the SC with 
customised SC policies 

1. Improve inventory 
management policies 
2. Minimise delays, reduce 
inventory costs, reduce dead 
stock, ensure timely availability 
of resources  

T4.1 SC components and process 
definition & Data collection 
T4.2 SC stress-testing simulation 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

DES and ABS 

Simulate the SC with decision-
making process and allow 
complex adaptive system 
approach 

1. Improve inventory 
management policies  
2. Improve fab performance 

T4.1 SC components and process 
definition & Data collection 
T4.2 SC stress-testing simulation 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

 Probability and statistics 
Model demand forecast 
fluctuation 

1. Represent and model the 
fluctuations of demand forecast 
for different time horizons (long-
term, mid-term, short-term);   
2. Instantiate the simulation and 
optimisation models under 
uncertainty 

T4.3 Optimisation of material flow in 
MaaS SC  

UC2: Production planning: 
Batching optimisation  

DES 

Simulate the behaviours of 
batching practices/approaches 
and formalise decision 
analytics (optimisation)  

Increased efficiency through 
optimal batch sizing 

T3.4 Robust Optimisation & Control of 
Production DTs 

UC3: Production planning and 
control: Scheduling, 
dispatching, monitoring for 
lot excursions  

Modelling methodology, 
probability and statistics 

Track, trace, and monitor lots 
of excursions 
  

Estimate the waiting 
time/processing time 
distributions between 
workshops; Estimate the cycle 
time 

T3.4 Robust Optimisation & Control of 
Production DTs 

Optimisation, DES 
 Monitor and optimise the fab 
performance under 
uncertainty  

1. Align global (fab-wide)-local 
(workshop) decision/targets  
2. Demonstrate an approach to 
addressing suboptimal 
production performances 

T3.4 Robust Optimisation & Control of 
Production DTs 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 
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Pilot 
Use-case  

(All use-cases are described in 

detail in D7.1) 

Model type/ 
Methodology  

(Indicates the category of 

models used) 

Explanation Methodology 
(Refers to specific models or tools 

applied) 

Expected Outcome/Benefits 
(Purpose of applying each model) 

Task under which the model has been 
identified/developed  

(Responsible task for developing the model) 

Ontology, simulation 
models 

Ontology is required for 
achieving semantic 
interoperability and 
simulation is required for 
analysis 

DT-based scheduling 
optimisation 

T 2.2 Ontology-based matchmaking 
T3.2 Resilience-Oriented Circularity & 
Sustainability Assessment 
 T 3.3 Resilience-Oriented Production 
Modelling and Simulation 

CONTI 

UC1: SC stress-test in the very 
high complexity context 

DES 
SC stress test for a defined 
product 

SC stress test, measure 
performance impact of defined 
disruptions 

T4.1 SC components and process 
definition & Data collection 
T4.2 SC stress-testing simulation 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

UC2: Optimisation of material 
flow along the SC 

Analysis methodology, 
Optimisation 

Map and optimise the 
circulation of material along 
the supply chain in terms of 
quantities to 
order/produce/distribute for 
different time horizons 

1. Minimise materials stock 
(particular attention will be paid 
to obsolete materials) 
2. Maximise customer 
satisfaction and minimise the 
associated logistic costs 

T4.3 Optimisation of material flow in 
MaaS supply chain 

UC3: Integration of 
production planning with 
production control 

DES, Probability and 
statistics 

1. Analyse historical 
disruptions/disturbances  
2. Enhance the robustness of 
production planning under 
disturbances/disruptions and 
the performance of 
production control 
3. The material flow behaviour 
and equipment 
reconfiguration of the 
production system can be 
effectively captured using DES 
modelled. 

1. Ensure consistency between 
production planning and 
production control  
2. Demonstrate an approach to 
addressing suboptimal 
production performance: 
Reduction of downtimes 
resulting from reconfiguration 
activities 

T3.4 Robust Optimisation & Control of 
Production DTs 
T4.6 Design of a resilience- and 
sustainability-oriented DT-based DSS 

Ontology, simulation 
models, optimisation 
algorithms 

Ontology is required for 
achieving semantic 
interoperability and 

Estimation of capacity at a given 
time or alternatives to achieve 

T 2.2 Ontology-based matchmaking 
T3.2 Resilience-Oriented Circularity & 
Sustainability Assessment 
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Pilot 
Use-case  

(All use-cases are described in 

detail in D7.1) 

Model type/ 
Methodology  

(Indicates the category of 

models used) 

Explanation Methodology 
(Refers to specific models or tools 

applied) 

Expected Outcome/Benefits 
(Purpose of applying each model) 

Task under which the model has been 
identified/developed  

(Responsible task for developing the model) 

simulation is required for 
analysis 

the defined capacity at a given 
time 

 T 3.3 Resilience-Oriented Production 
Modelling and Simulation 

ALL 

MaaS: Proof Of Concept 

Modelling methodology, 
semantics 

Analysis of semantic 
relations/interdependencies 
between information 
elements. 

Foundation for ontology-based 
matchmaking of services to 
requirements (mainly 
determined by to-be produced 
products) 

T 2.2 Ontology-based matchmaking 
T2.3 Semantic services development 

Modelling methodology, 
Optimisation 

Dynamic pricing for MaaS 

1. Endow the MaaS framework 
with a dynamic pricing 
functionality  
2. Demonstrate the feasibility of 
enhancing the responsiveness, 
flexibility, and scalability of 
manufacturing industries via 
MaaS 
3. Extend the scope of the 
conventional disruption 
mitigation strategies 

T4.4 Dynamic Pricing for MaaS 

Modelling methodology, 
Optimisation 

Schedule a set of on-demand 
manufacturing jobs on shared 
manufacturing resources  

1. Endow the MaaS framework 
with a scheduling functionality  
2. Demonstrate the feasibility of 
enhancing the responsiveness, 
flexibility, and scalability of 
manufacturing industries via 
MaaS 
3. Extend the scope of the 
conventional disruption 
mitigation strategies 

T4.5 Design a MaaS SC robust to 
disruptions 

Towards adoption of MaaS 
(dispersion of manufacturing 
services across both 

Survey 
Understand the barriers 
affecting the MaaS adoption 
in life-critical sectors: A case 

Facilitate the adoption of MaaS 
at the ecosystem level — 
spanning companies, countries, 
the EU, and globally — under 

T4.4 Design of a resilience- and 
sustainability-oriented digital DT-based 
DSS 
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Pilot 
Use-case  

(All use-cases are described in 

detail in D7.1) 

Model type/ 
Methodology  

(Indicates the category of 

models used) 

Explanation Methodology 
(Refers to specific models or tools 

applied) 

Expected Outcome/Benefits 
(Purpose of applying each model) 

Task under which the model has been 
identified/developed  

(Responsible task for developing the model) 

geographical and logical 
boundaries) 

study of AIRBUS ATLANTIC, 
CONTINENTAL, TRONICO 

both: Normal Operating 
Conditions (driven by economic 
and environmental values), and 
Abnormal Operating Conditions 
(driven by survival and recovery 
motivations) 

Table 1: Overview of models needed to be developed for each UC in the ACCURATE project 

 

 

All the models listed in the table will be described in detail in the corresponding deliverables, primarily those from WP2, WP3, and WP4. Some of these 

deliverables have already been submitted, while the remaining ones are scheduled for delivery in M22. 
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2.3 Resilience Oriented Production Models 

This section provides a concise summary of resilience-oriented production models being developed to 

address the challenges identified for each UC, considering specific scenarios and disturbance factors. 

The underlying concepts of individual production models, along with the challenges they aim to resolve within 

the internal value chain, are briefly outlined. Despite their unique objectives, these models share a common 

architectural structure, as illustrated in Figure 1 below. 

 

Figure 1: IDEF-0 model representation of the main entities and relation with the production models 

Data sources 

The data required for both the development of the models and their subsequent usage cycle follows a shared 

classification or taxonomy across most use UCs, as illustrated in Figure 2. Below is a list of the primary entities 

for which data collection is essential. 

In the input side for the production models summarized parameters of workstations, Material Handling and 

Products are processed fed. 

Workstation related parameters characterize main behaviour or a workstation such as:   

Capabilities – what the workstation can perform in terms of processes required by the product process plans 

to transform the input to output. 

Cycle times – the times necessary to carryout operations. 

Reliability – the probability or percentage that availability that machines are available without being subject 

to failure. 

Material handling related parameters characterize the capacity of transporting parts and work in progress in 

the factory. These include: 

Capacity – the maximum quantity or units of materials that the equipment can handle at a moment 

Speed – The speed in which the transporters can cover distances in the factory 

Product parameters in relation to the system are also key inputs such as: 
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Flow patterns and routes – define the logic and sequence of parts movements from input material until the 

end of the processing. 

Bill of materials – the list of sub-components and their hierarchical structure to form the product 

Batch and volumes – define if products are produced in minimum lots or required quantities per time period.  

In order to calculate the above-mentioned parameters, data collection templates are prepared as partially 

shown below: 

Product and Families 

Product SKU Product name Product family 

   

Bill of materials 

Component # Component name Quantity Process # Component Weight Component Material  Unit Type 

       

Processes 

Process #  Process name Short description Flow time (s/pcs) Flow policy Condition 

      

Workstation and resources 

Workstatio

n No 

Resource 

name 

Total 

available 

Average 

Utilization 

Planned 

maintenance 

Unplanned  

shut downs 

Scheduled  

shifts 

Tool 

changeover 

time 

        

Material Handlers 

Handler No Resource name Capacity Speed Availability 

     

 

Figure 2: Structure of the template used for data collection about internal value chains of the UCs. 

- Products and families 
- Bill of materials 
- Processes 
- Workstation and resources 
- Material handlers and transportation 
- Production planning and flow logics 

 

The production models being developed are as follows: 
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1)  Integrated assessment of supply and internal value chains by means of DTs for AIRBUS ATLANTIC 

In this UC the production models developed for are designed to facilitate robust planning capabilities that 

dynamically adapt to changes in internal value chain parameters and external supply chain factors affecting 

performance. Examples of such changes include shop floor disruptions at equipment and workforce level such 

as unforeseen failures, planned stops or external factors such as transportation delays impacting material 

arrival dates, and last-minute customer specification updates. In order to achieve the UC objectives, the 

production models integrate comprehensive assessments of Airbus Atlantic’s supply and internal value 

chains, enabling rapid adjustments that enhance resilience related KPIs. The primary focus is on improving 

both short-term and long-term resilience, as measured by KPIs. 

Targeted KPIs and Data Sources 

Various data sources are utilised to gather information for the development of DES models. This includes data 

on internal processing stages, production resources, production flows of selected product types, supply chain 

and logistics for component supply, and historical reliability data of suppliers. Additionally, the bill of 

materials—capturing the internal component flow from the Manufacturing Execution System (MES) and 

external component supply from the Enterprise Resource Planning (ERP) system—is leveraged to develop the 

models. Furthermore, availability and timing data for production resources are also collected. Integrating 

these diverse data sources into the models ensures a comprehensive and accurate representation of the 

factory's operations, facilitating precise analysis and optimisation of the target KPIs. 

Some of the output KPIs that will be calculated/forecasted by the models are: 

• Short term output KPIs that can be calculated are: 
o Lead time 
o Work in progress 
o On-time delivery (OTD) or delays 

• Medium term  
o Production rate (cumulative for a relatively longer period) 

 

2)  Production planning reconfiguration under disruption for CONTINENTAL 

This production model emphasises the robustness and reconfigurability of production planning at 

CONTINENTAL’s factory in Timisoara (Romania), considering the effects of various internal and external 

factors. The primary objective is to develop models that enable the production scheduling system to adapt 

effectively to changes and disruptions while maintaining efficiency and meeting demand. 

The main factors impacting on planning robustness and that should be captured by the production model 

include: 1. Demand fluctuation, 2. Missing components / insufficient inventory, 3. Unusable components, 4. 

Warehouse space constraints, 5. Capacity and utilisation challenges, 6. Machine breakdowns and 7. Variability 

in production yield and process duration. 

Targeted KPIs and Data Sources 

The production models will use data obtained from the CONTINENTAL systems, e.g. the system status, work 

in progress and fulfilled production orders to model relevant aspects of the manufacturing system. The data 

exchange may be asynchronous and initiated by the user. 

Decision variables include allocation of production orders towards manufacturing resources as well as 

selection of material flow options; the main DTs focus is the logical reconfiguration of the production system.  
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The UC will target the following KPIs:  

• Resilience  

• Delivery rate  

• Lead time and OTD 

• Sustainability  
 

Additional KPIs will be included in future versions of the production models. 

3): Production scheduling optimisation and shop floor control for TRONICO. 

In this case the production models aim to improve production scheduling and shop floor control. The models 

focus on supporting efficient scheduling to handle disruptions efficiently and optimising the production flow 

in TRONICO production system considering the short term and medium-term planning needs. The models 

should lead to significantly reduced downtimes arising from product changes and reconfigurations and 

improve overall efficiency. The manufacturing system level models could allow to propose the best strategies 

to manage scenarios that arise from internal disruptive events and managing them through the right size of 

work-in-progress (WIP) and prioritisation of production tasks. The models will contribute to shift from the 

currently adopted infinite capacity planning approach towards a finite capacity scheduling approach. 

Targeted KPIs and Data Sources 

Historical data is collected on the macro-stages of the TRONICO production system. This data is cleaned and 

restructured according to the DES requirements and approximations are made where details are missing in 

the historical data. 

The target KPIs that are calculated by the production models 

• Resilience 

• Blocked production orders 

• OTD 

• Lead Time 

• Sustainability KPIs 
 

4)  Production planning batching optimisation for TRONICO. 

This production model focuses on defining the ideal batch size for production, considering TRONICO's 

production capacity and necessary tools. This approach seeks to determine the most efficient batch sizes for 

different stages of production, such as larger batches for component mounting systems (CMSs) and smaller 

batches for subsequent manual operations. The current practice lacks a standardised method for determining 

batch sizes, relying instead on individual experience and intuition. 

Targeted KPIs and Data Sources 

Although the decision variable in this production model is different compared to the model number 3, the 

output KPIs and the data sources used are similar. 
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3 Circular Economy Circularity Indicators for a MaaS System 
This chapter discusses the methodology for measuring CE performance of MaaS systems in the ACCURATE 

project. The chapter provides a general overview of product-level CE indicators, and the recently published  

ISO standards for CE measurement. Finally, the chapter describes the circularity indicator screening tool 

developed in the ACCURATE project. 

3.1 Introduction to Circularity and Sustainability Indicators 

The transition from traditional linear economic models to CE approaches is essential as global resources 

diminish, and environmental damages increase. Traditional linear models, i.e. ’take-make-use-dispose’, 

economic models are proving to be unsustainable, this in turn promotes for society a shift towards a circular 

economy that tries to minimise waste and maximise resource efficiency through so-called restorative and 

regenerative processes. This approach tries to help to maintain materials and value over time, thereby creating 

a model that reduces the need for new raw materials and minimises waste production. Circularity involves 

the reutilisation of resources to reduce waste by maintaining products and materials in closed loops of 

production and reuse. A CE seeks not only to reduce environmental impacts but also to enhance economic 

benefits by transitioning from finite to renewable material sources (Lieder & Rashid, 2016). 

Indicators play a crucial role in managing and evaluating the implementation of CE strategies, allowing for the 

quantitative measurement of sustainability progress across various metrics. These indicators provide the 

metrics needed to track performance improvements, inform decision making, and perhaps even policy 

development, all in all addressing the challenges of resource use and environmental pollution. CE indicators 

are thus of high importance to the entire transition. The selection of appropriate CE indicators has many 

challenges due to the diversity of metrics and the complexity of their applications. Implementation of a CE 

framework relies on choosing the right indicators that reflect the sustainability goals of the organisation at 

hand and this can be a challenge for most organisations to even find what data availability they possess. 

Furthermore, the lack of standardisation and complex measurement frameworks can prevent and delay utility 

(Goddin et al., 2019). 

3.2 ISO Standards on Circular Economy 

The ISO 59000:2024 series of standards are designed to provide comprehensive guidelines and frameworks 

for implementing CE principles across various industries (Standardization, 2024a, 2024b, 2024c). These 

standards aim to promote sustainable development by encouraging the efficient use of resources, minimising 

waste, and enhancing the overall sustainability of products and processes throughout their life cycles. 

3.2.1 Measurement and assessment of circularity performance 

ISO 59020, a part of the ISO 59000 series, specifically focuses on the measurement and assessment of 

circularity performance within  organisations (Standardization, 2024c). It provides a standardised, 

comprehensive framework that includes core indicators for evaluating resource inflows and outflows, energy 

and water use, and economic factors. These indicators are crucial for ensuring consistency and comparability 

across different organisations and sectors, enabling a holistic view of circularity performance. Utilising the 

core indicators of ISO 59020 facilitates the ability of companies to reference, share, and benchmark their 

circularity results against others. This standardisation ensures that the assessment framework is robust and 

methodologically sound, helping organisations track and improve their circularity performance. Moreover, 

adhering to ISO 59020 helps organisations comply with international standards of measurement, supporting 

transparency, and promoting best practices in CE initiatives. 
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The core indicators of ISO 59020 are divided into several categories, each focusing on different aspects of 

circularity performance, mass inflows, mass outflows, water, energy, and economic. These categories ensure 

that all critical aspects of circularity are covered, enabling organisations to comprehensively assess and 

improve their circular economy practices. 

A list of mandatory and optional indicators from the ISO 59020 were compared with the list of product 

circularity indicators from Jerome et al. (2022). It was found that the product level indicators already identified 

adequately covered the mass inflow, outflow, and energy indicators outlines in the ISO 59020 standards, 

however there were key gaps that the ISO indicators filled, specifically in the category of water, which was 

not covered by the product level circularity indicators.  

3.2.2 Circular Economy Actions 

As organisations shift towards a CE, the ability to measure and trace this transition towards circularity 

becomes increasingly important. Many circularity indicators are used as tools in this process, providing 

knowledge, in the form of various KPIs, into how well a company or production system is performing regarding 

many aspects linked with circularity. However, given the broad scope of these indicators, many could 

potentially fit into so-called circular action categories within the circular economy framework. These CE 

actions are defined in ISO 59010, guidance on transition of business models and value networks 

(Standardization, 2024b). These actions help define what each indicator can contribute towards reducing the 

impacts of maintaining a linear economy. 

It should be noted that these actions are generally used to describe what a company or organisation can do 

to mitigate the linear economy and strengthen its transition to a CE. The CE framework is built on several core 

actions that drive the transition from a linear to a circular model. These actions are defined to try and 

maximise resource efficiency, minimise waste, and promote circularity across all stages of a product’s life 

cycle. 

3.3 Circular Economy Indicators and Actions Categorisation 

On reviewing the different indicators for CE measurement, it was evident that not all indicators are applicable 

towards CE measurement for MaaS nodes and the selection of indicators for assessment of CE performance 

can vary, depending on the priorities of the manufacturer and data availability. Due to lack of a systematic 

approach for categorising indicators in an easy-to-use manner, the ACCURATE project has developed a tool 

for screening CE indicators (further elaborated in Section 3.4). The tool focuses on screening resource-based 

product level CE indicators based on the requirements for simulation models establishes in the UCs. The 

following sections describe the methodology for developing the tool. 

In order to create a tool that screens for indicators based on the data available to the user, indicators need to 

be categorised and presented by category. To create such a tool, the methodology used, behind the current 

framework, stems from an iterative approach to finding the more efficient and feasible ways of implementing 

a tool that from a set of criteria can selectively choose the indicators that match those. The original paper 

that the product circularity indicators were gathered from Jerome et al. (2022), grouped each indicator 

together by their class and measurements. The proposed tool instead categorises indicators and data by the 

data types used in the calculation of these indicators. This was considered to be a better method for the 

purposes of the ACCURATE project, as many of these indicators do not necessarily include the same ways of 

quantifying them, referring to the exact measurement terms included in their formulas. The selected 

indicators for the screening tool use linearised formulas, that do not require any numerical approach to 

quantify. 
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All indicators use terms of measurements that fall into three general groups of physical measurements of 

mass, time and energy  (Aher & Ramanujan, 2024). This is seen throughout each indicator present, however, 

small deviations in forms of mass fractions of a product or subassembly and alike are also used. Although not 

directly a mass parameter, they can be very closely aligned and related to that of regular mass terms 

measured in units of mass (kg). 

By choosing to categorise based on terms, e.g. mass terms such as mass of products (Mprod) regardless of 

what measurements the indicators quantify on their own, it is possible to group each of the three general 

terms of mass, energy and time, that is included in each of the indicators, into larger groups for which they 

generally belong in and conform to. This procedure was done by analysing the flows that each of these terms 

are defined by in the flowchart, as each indicator has a unique flowchart (Jerome et al., 2022). 

The reason for grouping these terms together in this way is that one of the main ideas behind the framework 

is to create criteria for which each indicator is conditioned by. These criteria are more or less just the terms 

themselves, however, a question regarding the criteria is added. This question will often just be whether the 

user can estimate data regarding the different measures that the terms quantify. This will be explained further 

in the later sections. 

These criteria needed to be grouped together because each of them constituted one of the terms used in the 

indicators. If each term was assigned to a criterion, and each criteria needed to be given a question, then 

there would be 40+ criteria that one should respond to and address. This would in turn also make the 

selection process simpler. This would suddenly be a very long list of criteria, and thus it was decided that 

creating these groupings/categorisations of terms/criteria would make the process of addressing them more 

convenient. The convenience appears from creating an overall criterion for each of these groups, 

corresponding to each of the categories. Each of these overall criteria has underlying criteria that is associated 

with that category. If one cannot fulfil the overall criterion, then they would not be able to fulfil the underlying 

criteria either. This does, however, make some overall criteria broad, in the sense that it needs to cover all 

the underlying criteria. In the end, the user might have to answer far fewer questions if they have limited data 

(as expected in many cases) and thus would only be exposed to a lesser number of questions. 

All the criteria themselves are listed as a question, specifically they are set up to inquire the user regarding 

the data they can gather. Most criteria start with a question: Can you estimate data on ____, followed by the 

nature of the indicator term that the criteria refer to. For example, the criteria regarding the product mass 

term of Mprod is listed as: Can you estimate the data on the total mass of the product? Each criterion is 

followed by a description of what is meant by the question itself, which is usually short in nature due to the 

rather simple quantifications of these terms. For example, the description of the Mprod criteria is: “Total 

mass of end-products”. Having established the list of indicators and the criteria, along with a description 

explanation of each in regard to the flowchart, they could then be implemented together to form the 

framework of the tool. 

By narrowing down the categorisation to the more core functionality of each indicator in terms of their action 

contribution, one can provide a less cluttered and more focused view of how they contribute to specific 

circular actions. For example, an indicator that measures recycling rates is categorised under actions that 

contribute to value recovery because its primary function is to assess material recovery through recycling. 

Furthermore, the indicators used in the screening tool were mapped onto each category. There are five 

categories of CE actions defined in the ISO 59010 standards, that are adopted in the screening tool as follows: 

1. Create Added Value: These actions focus on optimising processes, improving resource efficiency, and 

enhancing sustainability to increase the overall value derived from materials, products, and services. 
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Indicators in this category typically measure efficiency improvements that reduce costs, waste, and 

environmental impacts, thereby directly adding value to the production process. 

2. Contribute to Value Retention: This group of actions is concerned with extending the lifespan of 

products and materials through reuse, maintenance, refurbishment, and remanufacturing. Indicators 

here assess how well a system retains the value of resources by keeping them in use for as long as 

possible. 

3. Contribute to Value Recovery: These actions are focused on recovering value from products, 

components, and materials that have reached the end of their initial use. Indicators in this category 

typically measure the effectiveness of recycling, material recovery, and reintroduction into the 

production cycle. 

4. Regenerate Ecosystems: This category encompasses actions that contribute to the regeneration and 

sustainability of natural ecosystems. Indicators here might measure the use of renewable resources, 

the reduction of environmental impacts, or the adoption of regenerative practices in production. 

5. Support a Circular Economy Transition: These actions facilitate the broader shift towards a circular 

economy by guiding strategic changes, measuring overall circularity, and demonstrating the 

economic viability of circular practices. Indicators in this category provide insights into the 

overarching progress of an organisation or system towards circularity (Standardization, 2024b). 

Given the broad applicability of many indicators, it might seem that they could fit into several, if not all, of 

these action categories. Many indicators do implicitly contribute to multiple areas of circularity, especially 

those that enhance process efficiency, which could be seen as adding value in a broad sense. However, to 

avoid overlap and ensure that each indicator is recognised for its primary function, it was chosen to categorise 

them based on what they explicitly measure and the most direct action that they support and contribute 

towards. This involved defining the explicit contribution and the core function of an action. While indicators 

often contribute to various circular actions implicitly, this categorisation focuses on the explicit outcomes 

they are designed to measure. This approach tries to identify the primary, and more explicit role each 

indicator plays within the CE framework. 

3.4 Description of the ACCURATE Circularity Indicator Screening Tool 

The product-level circularity indicators used in the ACCURATE project quantify the circularity of a product by 

assessing different aspects of its production, use, and disposal phase, as shown in Figure 3. This image 

specifies system boundaries and important material flow throughout a manufacturing system. 

 

Figure 3: System Boundaries of Product Lifecycle Used for Circularity Indicator Calculation (Jerome et al., 2022). 
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The ACCURATE project has developed a CE Indicator Screening Tool to address these challenges by simplifying 

the process of screening appropriate CE indicators. This tool is designed to help various stakeholders choose 

relevant indicators, with a focus on product- level indicators, through a series of questions that reflect specific 

terms included in the CE indicators. The main objective of the study is to create a robust indicator framework 

by systematically classifying indicators into a comprehensive list and establishing a methodology to narrow 

them down. This framework will aid in screening the most relevant indicators for evaluating progress towards 

circularity and sustainability. 

Microsoft Excel, with its already established graphical user interface (GUI) and interactive capabilities through 

macros and Visual Basic for Applications (VBA), was chosen to implement the tool. The core functionality of 

the tool is to organise a selection of CE indicators based on the user’s input regarding what indicators are 

accessible for their particular data availability. This is achieved through a criteria selection process where 

users tick checkboxes to indicate which criteria they can fulfil, as seen in Figure 4. 

 

Figure 4: Circularity Indicator Screening Tool Criteria Input Selection Tab. 

The user interface (UI) of the ACCURATE CE Indicator Screening Tool is crafted to be intuitive and user-friendly, 

ensuring users can easily navigate through the process of selecting appropriate circular economy indicators. 

The tool’s layout is structured to ensure logical flow and ease of use. It comprises: 

• Input Section: Where users input their criteria and select relevant checkboxes.  

• Criteria Sheet: Displays all possible indicators and their corresponding criteria. 

• Output Section: Shows the results after criteria submission. 

• FlowChartReadMe Sheet: Provides a comprehensive guide to the flowchart model used for the 
indicators. 

 

Each section is clearly labelled and logically arranged to guide the user through the selection process 

seamlessly. 

The Input Section, shown in Figure 4 allows users to provide their specific data and select relevant criteria. 

Key components include: 

• Checkboxes: Represent different criteria that users can select based on available data. These are 

Product-related terms 1 Checkbox
↓↓↓↓↓↓↓

Description Flowchart explanation

Product-related terms 2

Multi-terms

Mass terms related to specifications of a 
product. A product is a physical-based 

object designed for or utilized with a 

Mass of products refer to the weight of the 
finished product that leaves the 
manufacturing aggregated process (M) 

- Instructions  -
1 / Tick the checkboxes if you can fulfill or satisfy the criteria question.
2/ Click on the submit button to launch the search and have access to compiled list of CE indicators that match your criteria conditions.
Note: Click on the cells in the columns of 'Description' and 'Flowchart explanation' to see the full descriptions, as some of the text is not shown in the cell at first hand.

Inputs - Filtering

Selection Criteria     CISMS

   ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

                                    Mass terms                                 

Mass of the ith component in a product 
(part of a total assembly)

This mass term refers to the mass of a 
single component of a whole product. The 
flow is therefore the same as the entire 

Can you estimate the data on the mass of products and co-products  manufactured or 
produced?

  ↓↓↓↓↓↓↓
Description Flowchart explanation

Can you estimate the mass of a given component in a product?

Submit
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grouped into categories for easy access. 

• Dynamic Rows: Implemented using VBA code, dynamic rows show or hide based on checkbox 

states, ensuring only relevant options are displayed. This helps guide the user towards illustrating 

what indicators they both can and cannot calculate with the information they have at hand. 

Each criterion is linked to a checkbox. These checkboxes contain the logic for the criteria and store this 

information in the far-right corner of the sheet. This is because VBA cannot access information across different 

objects. 

To implement the hierarchical branching of the criteria, effective visual formatting is required. When a 

criterion is fulfilled, additional criteria should become visible to the user. This effect is achieved by utilising 

macros through VBA in Microsoft Excel, essentially through the logic of each of these checkboxes. These 

checkboxes are part of the developer tool in Microsoft Excel and are interactive objects that can be placed 

arbitrarily, but more importantly, within a given cell. 

The information that the checkbox stores is the name of the term in each indicator formula that they 

represent. For the criterion, Can you estimate the data on the total mass of the product?, this refers to the 

mass term: Mprod. A separate macro, acting as the way of submitting the answer to the criteria, is created to 

locate all the terms of the criteria that have been stored. If it finds a term, it will also register that criterion to 

be fulfilled. 

The Criteria Sheet, shown in Figure 5 functions as the taxonomy of the indicators, listing all possible indicators 

along the rows and the criteria along the columns. If an indicator contains the term that the criteria are 

defined by, a ‘check’ is placed in the cell that corresponds to the row of the indicator and the column of the 

term, as shown in Figure 4. This sheet uses visual cues like colour coding to show which criteria are fully or 

partially met, aiding users in understanding their data compatibility. Indicators with all terms/criteria fulfilled 

are shown in green, those with at least one or more criteria fulfilled are shown in yellow, and those with no 

criteria fulfilled do not change colour. 

 

Figure 5 Circularity Indicators Screening Tool Criteria Sheet Example 

The Output Sheet, shown in Figure 6 illustrates the selection of indicators that fully match the answers to the 

criteria in the InputSheet. The information shown here is copied from the Criteria Sheet. It is thus a sheet 

dedicated to the indicators that have all criteria fulfilled by the inputs. 

Flowchart
Adapted From: Jerome et al. 

(2022) 

Link
Push to show

↓↓↓↓↓↓↓↓↓↓

Energy Intensity (EI)
https://doi.org/10.1039/c
9gc02992c

The EI is a fraction of the total energy demand 
during extraction and production E_demand, 
compared to the total mass of end-products 

M_prod  and useful co-products M_(co.prod): The 

E = (E_demand-E_int) / (M_prod + M_co.prod)

Waste Factor (WF) https://doi.org/10.1039/c9gc02992c
Waste factor (WF) and measures the ratio of the 
total mass (kg) of solid, liquid or gaseous waste, 

generated as process wastes or lost from the 
system via leaks or spills, with respect to the total 

WF = M_waste / (M_prod+M_co.prod)

Feedstock Intensity (FI) https://doi.org/10.1039/c9gc02992c
Feedstock intensity (FI) quantifies raw material 

consumption and is the ratio of the total amount 
of the main raw materials used to the total 

amount of useful outputs (end-products and co-

FI = M_primary.mat / (M_prod + M_co.prod)

Process Material Circularity (PMC) https://doi.org/10.1039/c9gc02992c
Responsible material circularization strategies 

employed to recover and reuse some or all of the 
process auxiliaries consumed during the product 

synthesis (including solvents, catalysts, 

PMC = Σ (from i=1 to n) [(M_rec.prod.aux,i / 
M_prod.aux,i) × (100 / n)]

 Indicator Taxonomy

Circularity Indicators 
(C-Indicators)

DescriptionAccess
Link

 Formula
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Figure 6 Circularity Indicators Screening Tool Blank Output Sheet 

The FlowChartReadMe sheet provides a comprehensive guide to the flowchart model, shown in Figure 3, used 

for the indicators, detailing the phases and processes each indicator measures. It includes an explanation 

based on Jerome et al.’s paper and outlines key phases like the extraction phase (E) and material production 

phases for both non-renewable (MPa) and renewable materials (MPb); these phases are shown in Figure 3. 

This sheet serves to clarify the model and its components, which enhances the user’s understanding of the 

indica- tor measurements. The main flowchart model description was sourced from the supplementary 

materials provided in Jerome et al. (2022). 

The user interaction flow begins with selecting criteria in the Input Section, followed by reviewing the 

matched indicators in the Criteria Sheet, and finally viewing the tailored results in the Output Section. This 

flow ensures a streamlined and efficient process for identifying relevant indicators. 

  

Circularity Indicators 
(C-Indicators)

Access
Link

Description
Formula

Actions that create added value

Actions that contribute to value retention

Actions that contribute to value recovery
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4 Resilience Indicators for a MaaS System 
This chapter presents a systematic literature review aimed at identifying and organising resilience indicators 

for MaaS systems. The goal was to provide a comprehensive overview of resilience metrics applicable to both 

academic research and the industry pilots of the ACCURATE project. To support the identification and 

application of these metrics, a corresponding screening tool was developed to filter and select resilience 

indicators based on specific user needs in the ACCURATE project. 

4.1 Introduction to Resilience   

Resilience is a widely used, but rarely agreed upon, topic in the discipline of engineering. It is a key design 

principle and system attribute in engineering which is only just gaining popularity. Many engineered systems 

will experience some sort of failure or disruptive event during their lifetimes, but the concept of resilience is 

relatively new in the engineering field compared to other fields of study. Designing with resilience in mind 

and calculating different resilience metrics can help mitigate adverse effects from disrupted events. Resilience 

plays a key factor in reducing the occurrence and impacts of these events (Bhamra et al., 2011; Wied et al., 

2020). 

There are a wide range of definitions for resilience, encompassing many different aspects. For the purposes 

of this review and future work regarding the resilience of a production facility we will define resilience as a 

system’s ability to avoid, withstand, and recover from a disruptive event (Bhamra et al., 2011; Francis & 

Bekera, 2014; Wied et al., 2020). These disruptive events can be many things, specific to the ACCURATE 

project, these could be supply chain disruptions due to geopolitical events or a machine breakdown at a 

facility. This definition was chosen because it touches on three time periods surrounding a disruptive event. 

Figure 7 can be used as a reference in noting the timeline of a disruption. Figure 7shows a resilience curve, 

this is the performance of a system over a duration, during which a disruption to functionality occurs. The 

first period is the time before a disruption occurs, shown in green in Figure 7Figure 7. Here, the inherent 

properties of a system may allow it to avoid being impacted by a disruption. The next period of interest in the 

time in which a system is negatively impacted by a disruptive event, shown in orange in Figure 7. Here, the 

system must be able to absorb the negative effects. This time period encompasses the decline of system 

functionality up until the point where the final period, recovery begins. This final time period, shown in blue 

is the period in which a system recovers from the event and achieves a new normal state of functioning 

(Bhamra et al., 2011; Chatterjee et al., 2024; Wang et al., 2022). 

 

Figure 7: Resilience curve adapted from Chatterjee et al. (2024). 
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The first time period, before a disruptive event happens is the time when latent properties of a system protect 

it from a disruption. These properties are passive and pre-built into a system. The other two time periods are 

when the system is actively working to slow, and stop a disruption from affecting the system, as well as actively 

working to recover the system’s functionality. These passive, attributional and active aspects of a system are 

both needed to predict and strengthen the resilience of a system (Hosseini et al., 2016). 

Disruptions can affect different layers of the supply chain, resulting in a given company potentially being 

pressured from multiple sides, which could be decreased customer demand or supplier shortages (Sheffi, 

2017). Within WP3, the scope of disruptions are limited to those directly affecting a single manufacturing 

facility where a MaaS  service is provided. Herein, the term directly affecting refers to problems or solutions 

that are created by a disruption that disturb the planned operation of a manufacturing facility. Furthermore, 

such effects can be examined and controlled within the said facility using in-house solutions, therefore 

excluding disruptions such as decreased customer demand and supplier shortages—situations that would be 

typically solved by increased marketing or making better agreements with suppliers. The bounds of a single 

facility are in this instance defined as the facilities that a manufacturer or MaaS provider has direct control 

over. In other words, a company with multiple facilities all producing the same product (but at different 

stages) is counted as a single facility, just separated by the limitations of physical space. Productions running 

in parallel (i.e., producing the same product/component, but in multiple locations) are not as a single facility, 

as they can potentially operate independently and not be directly affected by disruptions hitting one facility. 

This following part of this chapter discusses results from a literature review on resilience indicators which can 

be applied to a single manufacturing facility. As such, it is important to talk about the nature and function of 

indicators. Indicators are tools used to demonstrate particular traits or tendencies of a system. These traits 

and tendencies must be observable and measurable in some form whether it be qualitative, quantitative or 

a mix of both. Indicators for resilience must be able to show partially or totally the ability of a system to 

adhere to the definition of resilience previously indicated, a system’s ability to avoid, withstand, and recover 

from a disruptive event. The resilience indicators that we are searching for in this paper are indicators meant 

to be used by important decision makers for a production facility (Turksezer et al., 2020; Valenzuela-Venegas 

et al., 2018). 

4.2 Resilience Indicator Literature Review 

There is a gap in understanding in current literature between resilience studies of SC level systems and single 

manufacturing facilities. SC level resilience is well-defined by current resilience indicators, where some might 

be relevant to single facilities, but no clear distinction has been made yet as to separating indicators based 

on controllable parts of the supply chain (Sheffi, 2017). With the world changing politically, culturally and 

environmentally, are efficient resilience strategies more important than ever. Manufacturing facilities are no 

different from normal businesses in their need for optimal preparation and response to potential disruptions, 

but they do differ in the ideal strategy for doing so. This paper will therefore explore the current state-of-the-

art on resilience metrics by classifying and categorising conventional resilience metrics which are relevant 

and controllable by single facilities. To do this are three research questions (RQs) are asked: 

• RQ 1: How are resilience indicators conventionally categorised? 

• RQ 2: Which categorises of indicators are the most relevant to manufacturing facilities? 

• RQ 3: Which are the current best applicable resilience indicators for single manufacturing facilities? 
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In this review paper a systematic literature review was completed, assessing resilience indicators in the 

context of MaaS systems. To do this, a two-step article search approach used for gathering data. The search 

engine used was Scopus1, limiting the search to English articles written after the year 2000. The research 

scheme consists of a preparation phase, where the research question was determined and aligned with 

industry partners, followed by a two-fold article search, where search criteria were expanded upon as existing 

literature was examined. 

To determine which indicators were most useful for a MaaS systems we entered in a dialogue with the three 

ACCURATE pilots partners. The resulting main research questions (RQ) from those discussions were: 

• RQ 1: What prior research exists assessing the resilience of single facilities and which of these 
indicators can be apply to a MaaS system?  

• RQ 2: What are the limitations to indicator complexity for usefulness in industry? 

• RQ 3: How can we categorise resilience indicators in MAAS systems? 

To answer the RQ 3 a baseline is needed for defining resilience in a manufacturing facility. Therefore, going 

back to RQ 1 and RQ 2 a categorisation of conventional resilience indicators is needed to properly identify 

metrics which are usable in a manufacturing facility under the scope of being manufacturing solutions. To 

answer the three RQs a systematic literature review was done using Scopus. The review was thereafter split 

up into multiple searching stages. These stages aimed to understand parts of the RQs continually, to direct 

further searches in a way that had the highest probability of answering the RQs. The literature search was 

split up in three stages, with the first stage providing a bigger scope of articles, then the second narrowing it 

down and the third expanding it again to encapsulate the most possible relevant articles. During each of the 

searching stages some articles were discarded based on their availability, relevance to engineering, and 

relevance to resilience. Articles of interest were picked out and used to direct further stages of the literature 

search. All three stages of literature search were therefore done before a complete exclusion scheme was set 

up to limit the articles worked with. 

The first literature search stage aimed to understand general resilience indicators related specifically to 

manufacturing to answer RQ 1 and RQ 2. To do this a keyword search was set up using Scopus excluding non-

English papers. As shown in Table 2, the keywords were specifically focused on resilience or manufacturing 

terms or indicator terms. A focus was also made on circularity, sustainability and life cycle assessment so as 

to make the indicators more compatible with WP 3 goals. 

 

Table 2: Initial Keyword Search. 

Search 
category 

Search string Articles found 

Initial search 
terms 

TITLE-ABS-KEY((resilien*) W/5 (manufacturing OR production OR 
design ) AND (( circular* OR sustainab* OR "life cycle a*" ) W/2 
(indicator OR metric OR measurement OR result)))   

54 

 

From the first literature search, one article of interest was found that defined resilience in a manufacturing 

facility (M. El-Halwagi et al., 2020). This definition of 12 categories of resilience of an efficient manufacturing 

 
1 https://www.scopus.com/home.uri 
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facility was used to direct the second literature search, which became a 12-fold search with keywords relating 

specifically to each of the 12 categories of resilience, as can be seen in Table 3. The second literature search 

resulted in a total of 76 articles being found, with some of them being duplicates. There were categories such 

as reconfigurability, recoverability, modularity and reliability that were much more present than others. The 

significant difference in available literature across categories suggested that some of the 12 different indicator 

categories were less relevant to the RQs. 

 

Table 3: Secondary Keyword Search. 

Search category Search string Articles 
found 

Fail safe by design TITLE-ABS-KEY("Fail-safe design" AND "Indicator")  4 

Recoverability/Restorability TITLE-ABS-KEY((Recovera* OR Restora*) W/10 
Manufacturing AND "Indicator") 

8 

Redundancy TITLE-ABS-KEY(Redunda* W/10 Manufacturing AND 
"Indicator") 

3 

Reconfigurability TITLE-ABS-KEY(Reconfigur* W/10 Manufacturing AND 
Indicator AND quantita*) 

8 

Modularity/Mobility/Distributability TITLE-ABS-KEY((Modular* OR Mobility OR Distribut*) 
W/10 Manufacturing AND Indicator AND quantita*) 

18 

Flexibility TITLE-ABS-KEY(Flexibility W/10 Manufacturing AND 
Indicator AND quantita*) 

8 

Controllability TITLE-ABS-KEY(Controllability W/10 Manufacturing AND 
Indicator) 

6 

Reliability TITLE-ABS-KEY(Reliability W/10 Manufacturing AND 
Indicator AND quantita*) 

15 

Repurposability TITLE-ABS-KEY(Repurpos* W/10 Manufacturing AND 
Indicator) 

1 

Rapidity TITLE-ABS-KEY(Rapidity W/10 Manufacturing AND 
Indicator) 

2 

Robustness TITLE-ABS-KEY(Robustness W/10 Manufacturing AND 
Indicator AND quantita*) 

1 

Resourcefulness TITLE-ABS-KEY(Resourceful* AND Manufacturing AND 
Indicator) 

2 

 

The third literature search was a more general search without specific categories of resilience indicators, as 

seen in Table 4. Here the focus was kept on a single facility, but the search criteria on sustainability, circularity 

and life cycle assessment was removed as it severely limited the number of articles. 

 

Table 4: Third Keyword Search. 

Search 
category 

Search string Articles 
found 
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General 
resilience & 
manufacturing 

TITLE-ABS-KEY(( "resilien* metric" OR "resilienc* assessment" OR "resilienc* 
indicator" ) AND ( " manufact* " OR " facility " OR " production " OR " factory 
" OR "plant" )) AND ( LIMIT-TO ( SUBJAREA,"ENGI" ) OR LIMITTO ( 
SUBJAREA,"DECI" ) OR LIMIT-TO ( SUBJAREA,"ENER" ) ) AND ( LIMIT-TO ( 
DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( LANGUAGE,"English" ) )  

164 

 

With the reduced focused on sustainability was a total of 164 articles found, with some being duplicates of 

previous searches. Additional articles which were articles not found in the literature search were added by. 

The overall literature search resulted in a total of 259 articles, excluding duplicates.  

Given the large number of retrieved articles, we performed two filtering rounds to narrow the corpus to 

articles relevant to the RWs. The first filtering round excluded articles that were not relevant to resilience of 

manufacturing systems. This was determined based on the title, abstracts,  and conclusions section of the 

article. The relevance to resilience criteria was chosen based on RQ 1 and to keep within the scope of the 

ACCURATE project. The second filtering round excluded articles that did not correspond to research applicable 

to a single facility or contained indicators deemed to be difficult to reproduce. The criteria on applicability to 

a single facility (MaaS node) was defined based on the scope of WP 3. The exclusion criteria on reproducibility 

was used as several articles contained indicators which were hard to reuse in another context, or were hard 

to test be used in a practical context by decision makers in manufacturing facilities. After the two filtering 

step, the corpus narrows down to a total of 32 articles. These articles were fully read through, and if they had 

indicators of interest, they were they logged and classified into either the main category Preventative or 

Active/Reactive. Under these primary categories, the indicators were also classified  into one or more of of 

several subcategories 

Under the category ‘Preventative’ the sub-categories included Modularity, Redundancy, Robustness & 

Reliability. The modularity subcategory exemplifies a manufacturing facility built in such a way that sections 

can be easily replaced, moved or reused elsewhere. The redundancy subcategory highlights facilities where 

parts of the facility  are functional even if other parts fail under a disruption. The robustness subcategory 

corresponds to how well a facility can withstand changes from its ideal state. The reliability subcategory refers 

to how long a facility can be expected operate in its ideal state. 

Under the category ‘Active/Reactive‘ the sub-categories included Reconfigurability, Absorption, 

Recovery/Rapidity & Repurposability/Flexibility. The reconfigurability subcategory refers to the degree of 

changeability after a disruption has happened. The absorption subcategory corresponds to the magnitude of  

‘stress’ a manufacturing facility can withstand before reaching a failure state. The recovery/rapidity 

subcategory combines the terms of recovery and rapidity from the previous 12 resilience categories to 

describe how the facility recovers from a disruption and how fast the recovery occurs. The 

repurposability/flexibility subcategory combines two categories from the 12 resilience categories, which 

focus on the ability to be used for other tasks after a disruption has happened, which are not necessarily 

related to the existing production. 

Resilience indicators from the literature search were also classified based on their: 

• evaluation method, which included method, equation, survey, and simulation.  

• evaluation type, which included quantitative, qualitative and hybrid.  

• external data requirements (by source), which included downstream, upstream or no external data. 

• Validation type; whether the indicators were validated using a hypothetical or real case study. 
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4.3 Literature Review Key Findings 

As described in the previous section, all indicators found in the evaluated literature were categorised based 

on the aspect of resilience they covered, evaluation methods used, evaluation type, data sources necessary 

and type of validation case used. A total of 86 resilience indicators were identified by reviewing the articles, 

and are listed in Table 5, Resilience Indicators List
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Table 5: Resilience Indicators List. 

Indicator Description 
Resilience 
Category 

Evaluation 
Method 

Data Source Validation Case 

Human Intensity (Stocker et al., 
2022) 

A ratio describing how many process paths in a facility that 
requires human input. This can describe the degree of 
automatization. 

Robustness Equation Upstream Real 

Machine Intensity (Stocker et al., 
2022) 

A ratio describing how many process paths in a facility that 
requires machines for execution. A higher ratio can mean 
increased machine-related vulnerabilities. 

Robustness Equation Upstream Real 

Model Redundancy (Stocker et 
al., 2022) 

A ratio describing how many of the resource paths have 
redundant resources for replacements. 

Redundancy Equation Upstream Real 

Resource Redundancy Degree 
(Stocker et al., 2022) 

A ratio focusing on a single resource path and seeing what 
degree of redundancy it has in resource replacements. 

Redundancy Equation Upstream Real 

Resource Redundancy Intensity 
(Stocker et al., 2022) 

This metric shows the relative resource redundancy of a 
process path. A higher value indicates that the process is 
redundant and resilient. 

Redundancy Equation Upstream Real 

Composite Net Resilience Index 
(Yazdanie, 2023) 

The net resilience index is a framework for doing linear 
optimization of multiple resilience indices in energy systems 
(But can be used generally as long as the sub indices are 
qualitative and linear).  

Every category 
except absorption 

Equation 
and 
Simulation 

Upstream and 
Downstream 
 

Real 

Decision Making Framework for 
Reconfiguration (M. Mabkhot et 
al., 2020) 

This is not a single indicator but three different methods on 
how to reconfigure a given setup to make it more resilient 
based on quantitative measurements such as utilization, wait 
time and module state. 

Reconfigurability 
Expert 
Evaluation 

Upstream and 
Downstream 
 

Hypothetical 

Reconfiguration Smoothness 
Factor (Yang et al., 2022) 

This index is used to evaluate the cost, time, and effort 
required for reconfiguring a production line. It 
takes into account both the reconfiguration smoothness and 
the feasibility of the project 

Reconfigurability Equation 
Upstream and 
Downstream 
 

Real 

Reconfiguration Productivity 
(Yang et al., 2022) 

This index is used to evaluate the production capacity and 
scalability of a production line. 

Reconfigurability Equation 
Upstream and 
Downstream 

Real 

Lifecycle Cost (Yang et al., 2022) 
This index is used for evaluating the facility investment and 
operating cost compared to the investment budget 

Robustness & 
Reconfigurability 

Equation Upstream Real 
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Space Efficiency (Yang et al., 
2022) 

An index used to assess how efficiently a space is used based 
open the area of the line compared to the constrained space 
where the manufacturing line can be configured. 

Reconfigurability Equation Upstream Real 

Integrated Reconfiguration (Yang 
et al., 2022) 

A single value calculated from the previous four indices to 
give one combined estimate for the reconfigurability 
resilience of a factory. 

Reconfigurability Equation 
Upstream and 
Downstream 
 

Real 

Customization (Kombaya Touckia, 
2023) 

Customization is a metric determining the flexibility of 
producing different types of products depending on the 
operations flexibility, the products flexibility and the product 
point of differentiation. This indicator is used in a combined 
simulation. 

Reconfigurability 
& Repurposability / 
Flexibility 

Equation 
and 
Simulation 

Upstream and 
Downstream 
 

Real 

Adaptability (Kombaya Touckia, 
2023) 

Adaptability ensures the convertibility of the system between 
products by acting on the functionality as well as the 
production capabilities of the system. The adaptability 
measure is achieved by adjusting the production system in 
terms of functionality and by changing the production rates. 
This indicator is used in a combined simulation. 

Robustness & 
Reconfigurability & 
Repurposability / 
Flexibility 

Equation 
and 
Simulation 

Upstream Real 

Modularity (Kombaya Touckia, 
2023) 

Modularity corresponds to the ability of the system to be 
divided into subunits and to integrate new elements. This 
indicator is used in a combined simulation. 

Modularity & 
Reconfigurability 

Equation 
and 
Simulation 

Upstream Real 

Integrateability (Kombaya 
Touckia, 2023) 

Integratebility corresponds to the ability to include new 
components on the line using adapted interfaces. This 
indicator is used in a combined simulation. 

Modularity & 
Reconfigurability & 
Repurposability / 
Flexibility 

Equation 
and 
Simulation 

Upstream Real 

Diagnosability (Kombaya Touckia, 
2023) 

Diagnostic capacity corresponds to the speed of detection of 
a failure on the system or a quality defect and its root cause. 
This indicator is used in a combined simulation. 

Reliability & 
Recovery / 
Rapidity 

Equation 
and 
Simulation 

Upstream Real 

Mission Reliability (Dai et al., 
2014) 

Mission reliability describes the amount of rework needed in 
a reconfigurable system to make it run as a new process. It is 
based a on simple logistic function to measure the expected 
reworking time. 

Reconfigurability 
& Repurposability / 
Flexibility 

Equation Upstream Hypothetical 
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Overall Equipment Effectiveness 
Flex (Ginste et al., 2022) 

It merges information of equipment usage, process yield and 
product quality like the original OEE measure but includes 
flexibility measured by mobility, uniformity and range. 

Repurposability 
/ Flexibility 
 

Equation 
Upstream and 
Downstream 

N/A 

Condition Indicator (Hoseyni & 
Cordiner, 2024) 

The condition indicator measures when a condition-based 
maintenance threshold has been reached a maintenance 
should be done for a single machine 

Reliability Equation Upstream Real 

Negentropy (Durán et al., 2023) 
An indicator applied to time series and frequency histograms 
of disruptions, used to measure how resilient a response is 
based on tendencies in a normal system availability graph 

Recovery / 
Rapidity 

Equation Downstream Hypothetical 

Response Time (Wang et al., 
2022) 

The time between a disruption and the beginning of 
performance decline. 

Robustness 
Equation 
and 
Simulation 

Downstream Real 

Disruption Time (Wang et al., 
2022) 

The amount of time between the beginning of performance 
decline and the beginning of recovery. 

Absorption 
Equation 
and 
Simulation 

Downstream Real 

Rapidity in the Disruption Phase 
(Wang et al., 2022) 

An index that quantifies how quickly the system declines. Absorption 
Equation 
and 
Simulation 

Downstream Real 

Robustness (Wang et al., 2022) An index that quantifies the lowest system performance. Absorption 
Equation 
and 
Simulation 

Downstream Real 

Recovery Time (Wang et al., 
2022) 

The time it takes a system to recover from the lowest point of 
performance to a new steady state. 

Recovery / 
Rapidity 

Equation 
and 
Simulation 

Downstream Real 

Rapidity in the Recovery Phase 
(Wang et al., 2022) 

An index that quantifies how quickly a systems performance 
increases during the recovery phase 

Recovery / 
Rapidity 

Equation 
and 
Simulation 

Downstream Real 

Recoverability (Wang et al., 
2022) 

The size between performance achieved by the system in the 
new stable phase and the initial phase. 

Recovery / 
Rapidity 

Equation 
and 
Simulation 

Downstream Real 
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Loss of Performance (Wang et al., 
2022) 

Total lost performance during a disruption and recovery. Absorption 
Equation 
and 
Simulation 

Downstream Real 

Time Averaged Loss of 
Performance (Wang et al., 2022) 

An average loss of performance per time step. Absorption 
Equation 
and 
Simulation 

Downstream Real 

Probability of Failure (Lounis & 
McAllister, 2016) 

An index that quantifies the probability of failure of a system. Robustness 

Equation 
and 
Expert 
Evaluation 

N/A Real 

Probability of Loss (Lounis & 
McAllister, 2016) 

An index that quantifies the probability of loss in a system. 
 

Absorption 
Equation 
and 
Simulation 

N/A Hypothetical 

Functional Service Loss Matrix 
(Moslehi & Reddy, 2018) 

The total functional service loss due to 
a disruption. 

Absorption 
Equation 
and 
Simulation 

N/A Hypothetical 

Imposed Cost Matrix (Moslehi & 
Reddy, 2018) 

Cost imposed on the system due to a failure mode. Robustness 
Equation 
and 
Simulation 

N/A Hypothetical 

Resilience Index (Moslehi & 
Reddy, 2018) 

The difference between maximum imposed cost possible and 
current imposed cost, divided by the maximum imposed cost. 

Absorption 
Equation 
and 
Simulation 

N/A Hypothetical 

Fraction of Simulations that 
result in Resilience Operation 
(Matelli & Goebel, 2018) 

Probability that a design has resilient operations (there is a 
failure, but it still operates at a reduced 
standard). 

Absorption 
Equation 
and 
Simulation 

N/A Hypothetical 

Resilient Operation Time (Matelli 
& Goebel, 2018) 

A weighted average of the operating time of all simulations 
were a component failed. 

Absorption 
Equation 
and 
Simulation 

N/A Hypothetical 

Time until Failure (Matelli & 
Goebel, 2018) 

Average total operating time for all simulations that result in 
failure. 

Robustness 
Equation 
and 
Simulation 

N/A Hypothetical 
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Fractions of Simulations that 
result in Failed Operations 
(Matelli & Goebel, 2018) 

An index that quantifies the probability of a system design 
failing. 

Robustness 
Equation 
and 
Simulation 

N/A Hypothetical 

Normalized Resilience Index 
(Matelli & Goebel, 2018) 

A weighted average of all simulation operating time normal 
or failed normalized by time. 

Robustness & 
Absorption 

Equation 
and 
Simulation 

N/A Hypothetical 

Resilience (Bhusal et al., 2020) 
The ratio between recovered functionality to actual 
functionality. 

Recovery/Rapidity 
Equation 
and 
Simulation 

N/A N/A 

Daily Reliability Level (Ba-Alawi 
et al., 2020) 

Probability of failure of a component on a daily level. Reliability 
Equation 
and 
Simulation 

N/A Real 

FTA Probability of Failure (Ba-
Alawi et al., 2020) 

Probability of failure based on a fault tree analysis. 
Robustness & 
Reliability 

Equation 
and 
Expert 
Evaluation 

N/A Real 

Supplier Delivery Rate (Sambowo 
& Hidayatno, 2021) 

The percentage of orders delivered on or before the due date 
for a certain supplier. 

Reliability 
Equation 
and 
Survey 

Upstream 
 
 
 

N/A 

On Time Delivery (Sambowo & 
Hidayatno, 2021) 

The percentage of orders delivered on or before the due date Reliability 
Equation 
and 
Survey 

Upstream N/A 

Supplier Delivery Lead Time 
(Sambowo & Hidayatno, 2021) 

An index that quantifies the time between receiving an order 
and delivering. 
 

Reliability 
Equation 
and 
Survey 

Upstream N/A 

Manufacturing Lead Time 
(Sambowo & Hidayatno, 2021) 

The complete time it takes to manufacture a product Reliability 
Equation 
and 
Survey 

N/A N/A 

Capacity Utilization (Sambowo & 
Hidayatno, 2021) 

An index that quantifies how much of the total capacity is 
currently being used. 

Redundancy 
Equation 
and 
Survey 

N/A N/A 
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Stock Level (Sambowo & 
Hidayatno, 2021) 

The number of goods that are able to be stored and delivered 
in a storage facility. 

Redundancy 
Equation 
and 
Survey 

N/A N/A 

Reserve Funds (Sambowo & 
Hidayatno, 2021) 

An index that quantifies how many reserved resources an 
organization has. 

Redundancy Survey N/A N/A 

Employees (Sambowo & 
Hidayatno, 2021) 

An index that quantifies the number of employees working at 
an organization. 

Redundancy Survey N/A N/A 

Robustness Loss (Juan-García et 
al., 2021) 

The maximum value of performance lost during a time series. Robustness 
Equation 
and 
Simulation 

N/A N/A 

Speed to Recovery (Juan-García 
et al., 2021) 

Time between detection of a failure and returning to 
acceptable levels of operation. 

Recovery / 
Rapidity 
 

Equation 
and 
Simulation 

N/A N/A 

Global Resilience Index (Juan-
García et al., 2021) 

A compound metric consisting of the integral of the 
functionality minus the compliance limit of functionality 
dived by the speed to recovery for normalization. 

Reconfigurability 
& Repurposability / 
Flexibility 

Equation 
and 
Simulation 

N/A Real 

Resilience of a Scheduling System 
(Feng et al., 2022) 

The resilience of a scheduling system takes the time 
efficiency of a scheduling completion and a 
correction factor based on available resources. 

Recovery / 
Rapidity 

Simulation 
Upstream 
 
 

Hypothetical 

Time Series System Cyber 
Resilience(Simone et al., 2023) 

This indicator defines the best case and an actual case time 
series metric and evaluates the differences using the area 
from their integrals to define how close the system performs 
to the resilient strategy. 

Robustness & 
Absorption 

Equation 
and 
Simulation 

Downstream Real 

System Absorption Performance 
(Pawar et al., 2022) 

This indicator measures the performance during a disruption 
and describes how much of a disruption the system absorbs 
while continuing safe and low failure rate operation. 

Absorption Simulation Downstream Real 

System Adaptation Performance 
(Pawar et al., 2022) 

Adaption is defined as intervention in a system automatic or 
manual and the system adaption performance defines how 
the systems reliability changes during an adaption phase. 

Reconfigurability 
& Absorption 

Simulation Downstream Real 

System Recovery Performance 
(Pawar et al., 2022) 

The recovery performance measures the systems need for 
maintenance and how close it is to normal operations. 

Absorption & 
Recovery / 
Rapidity 

Simulation Downstream Real 



ACCURATE                                                       42 

 
 

   

 

Availability Resilience (Durán et 
al., 2021) 

This indicator defines resilience by the availability of the 
machine through different stages of the production and gives 
the probability of a machine not working at different times. 

Reliability 
Equation 
and 
Simulation 

Downstream Real 

Resilience Index (Singhal et al., 
2022) 

The resilience index takes account of the repair time and a 
step wise recovery function to describe time 
until full recovery. 

Recovery / 
Rapidity 

Equation 
and 
Simulation 

Upstream and 
Downstream 

Hypothetical 

Robustness Resilience Index (Wu 
et al., 2024) 

This index requires a failure mode analysis and then the index 
is calculated based on the probability of failure and 
importance of each failure mode. 

Robustness Simulation Upstream Real 

Recovery Resilience Index (Wu et 
al., 2024) 

The index requires a recovery model and a system 
performance simulation of the recovery process and then the 
index is calculated as the difference in area by a time series 
integral of the best case vs recovery case scenario. 

Recovery / 
Rapidity 

Simulation 

Downstream 
 
 
 

Real 

Function Performance Index (Wu 
et al., 2024) 

This index requires performance curves of different recovery 
situations and the probability of those situations to calculate 
the expected performance. 

Recovery / 
Rapidity 

Simulation Downstream Real 

System Resilience (Tong & 
Gernay, 2023) 

This indicator defines resilience as a metric dependent on a 
network of machines which can all experience disruptions 
affecting each other using the probability of individual 
failures. 

Absorption & 
Recovery / 
Rapidity 

Simulation Downstream Real 

Resilience (Patriarca et al., 2019) 
This metric combines simple metrics for absorption, recovery 
and adaptive capacities of the system. 

Reconfigurability 
& Absorption 
& Recovery / 
Rapidity 

Equation 
and 
Simulation 

Upstream and 
Downstream 

Real 
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Results show that the most common preventive indicator subcategory was robustness and the least common 

was modularity. We found no indicators specifically evaluating modularity,  but some multi-issue indicators 

still considered this category. The most common active/reactive indicator was absorption, with 

repurposability/flexibility being the least common. We found an almost even distribution of indicators across 

the main categories of preventative and active/reactive.  

 

Figure 8: Distribution of Resilience Indicator Categories. 

The different distributions of the indicators in the previously mentioned categories, are shown in a pie chart 

form in Figure 8. Each colour indicates the aspect of resilience which the indicators fall into, with a specific 

colour scheme showing if the subcategories are reactive or preventative. Multiple indicators were also found, 

which were a combination of different categories. What can be seen from the multiple category cases is that 

active/reactive indicators are often grouped together, while preventative multicategory indicators also had 

active/reactive aspects. 

It is important to discuss why certain resilience categories were not heavily utilised, despite them being 

initially included in the classification criteria. For all indicators, the category modularity was never found to 

be a singular indicator category. The subcategory repurposability/flexibility was represented as a singular 

category in only one indicator. The modularity category was in a multicategory three times, and the 

repurposability/flexibility was in a multicategory seven times. For modularity, this small number of indicators 

seem to be because making production lines modular becomes a priority when a disruption has occurred, 

therefore becoming a reconfiguration rather than a baseline modular system. This decreased focus on 

modularity in the preventative stage might make production lines less prepared for reconfiguration, even if 

the manufacturing facility performs well in reconfigurability indicators. The gap of sufficient indicators in the 
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modularity category leads us to conclude that this may be a more difficult system attribute to measure, 

especially if it is not a focus in the initial design of a system. 

A hypothesised reason for repurposability/flexibility only being present once as the sole indicator category 

but seven times as a multicategory indicator is because the found indicators do not clearly distinct between 

reconfiguration of a setup compared to repurposing a setup. This unclear distinction can therefore mean that 

two separate categories are not relevant for future groupings of those indicators in manufacturing. It may 

also be the case that repurposability and flexibility are an indicator category that should be focused on in the 

preventative stage, where a design can be made with the ability to be repurposed in mind. Additionally, 

flexibility being a broad topic could possibly benefit from having greater precision in its definition. The reason 

for there being few sole repurposability/flexibility indicators is also the reason why there are an increased 

amount of multicategories for active/reactive indicators.  

It can be seen in Figure 8, that a clear distinction exists when categorising preventative indicators, but the 

active/reactive categories are more spread across the different indicators. An issue with indicators that rely 

on many categories is that they are often complicated to calculate, but more importantly complicated to 

understand. A truly useful resilience indicator is one that can be acted upon to improve a system; when a 

conglomeration of resilience attributes are weighted into one indicator it is difficult to find the true meaning 

in the number that is presented. The review also shows that complexity of calculating different resilience  

indicators can significantly vary. Indicators that are solely in the category of absorption are some of the 

simpler indicators, and serve as a base for other indicators. Such indicators include, Probability of Loss and 

Probability of Failure, both of which are important factors on their own, but also often serve as a contributory 

term in more complex simulation-based indicators which aim to minimise losses and failures in a facility. The 

fact that complex indicators are build on top of simpler indicators, provides an implementation strategy for 

manufacturing decision makers in gathering data for simple indicators first and thereafter using that 

information in the more complex models. 

The indicators based on probability of loss often look at four different types of losses: time losses, human 

losses, machine losses, and economic losses. The reliability category mainly focuses on time loss and economic 

loss with indicators such as Supplier Delivery Rate, On-Time Delivery and Manufacturing Lead Time, which 

aim to increase the reliability of production and reduce the potential time spent, and therefore the economic 

loss. The robustness category mainly focuses on machine loss, aiming to make the facility as robust as possible 

to different kinds of disruptions. Here, indicators include Machine Intensity and Time series system cyber 

resilience, and Human Intensity. Human loss indicators are scarce, and were therefore not clearly in one main 

category of indicators. Finally, the active/reactive indicators didn’t seem to be as clearly distinct in the across 

different types of losses. 
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Figure 9: Distribution of the Method of Evaluation for the Surveyed Resilience Indicators. 

The distribution of the method of evaluation for the surveyed resilience indicators can be seen in Figure 9. 

The methods of evaluation include equations, expert opinions, surveys, and simulation models. Please note 

that in situations where indicators used two or more methods to be calculated, these are listed as their own 

category. The most prevalent methods of evaluation are equations and simulation models (individually and 

also in combination). This is expected since all of the surveyed resilience indicators were quantitative; no 

qualitative or hybrid indicators present in the filtered list of indicators as the aim of WP 3 is to identify 

indicators that can be subsequently linked to the production-level DTs developed in ACCURATE.  

There is an even distribution of preventative and active/reactive indicators based on equations or simulation 

models, suggesting that there isn’t a clear difference in complexity of indicators when looking across these 

main categories. The indicators using only equations as the method of evaluation often are simpler indicators, 

which can be calculated with few terms.  Indicators based on simulation models often require minimising for 

one of the different losses as described earlier. Indicators based on simulation models are mainly split into 

two groups, those that focus on minimisation of loss and those using simulation as a means of testing the 

theory the indicator is based on.   

Comparing equation and simulation-based resilience indicators, it is possible to establish an ease-of-

implementation hierarchy for the surveyed indicators. Equation-based indicators are the simplest to use, 

followed by mixed methods indicators that use equations and simulation models that are decoupled from 

each other. Indicator based on simulation models alone are not easy-to-implement with complexity being one 

of their defining features. Survey-based resilience indicators can be easy to implement as they typically 

require querying workers of the given facility questions. However, they are harder to implement when 

external data is required, either from upstream or downstream stakeholders. Lastly, resilience indicators 

based on expert evaluations can be easy to use if the access to relevant experts is available, but can potentially 

become expensive to implement as external experts and consultants may need to be hired. 
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Figure 10:  Distribution of External Data Source for the Surveyed Resilience Indicators. 

The distribution of the external data requirements (by data source), and validation type can be seen in Figure 

10 and in Figure 11respectively. As shown in Figure 10, we found an almost even distribution of indicators 

needing upstream data, downstream data, or no external data. There were also some cases where both 

upstream data and downstream data were needed to compute the indicators, but such cases were rare. 

Resilience indicators requiring no external data sources potentially require lesser implementation effort, 

when compared to the ones requiring either upstream or downstream data.  Combining results shown in  

Figure 10 with those in Figure 8 reveals that preventative indicators most often needs upstream information, 

as they plan against future disruptions by strengthening the production’s ability to withstand stress. This is 

seen in indicators such as Supplier Delivery Rate and On-Time Delivery where information from suppliers are 

needed to prepare the manufacturing floor most efficiently to variance in delivery rate or time of delivery. 

The opposite is true for active/reactive indicators, which most often require downstream data, as the 

simulations either need to know the response from customers or the people which the manufacturing facility 

caters to. This is the case because resilience in these scenarios are often defined by the ability to meet 

customer demand in a disruption. Therefore, without an understanding of changing customer demand during 

a disruption is it not possible to calculate the extent of the loss. Resilience indicator categories that require 

the least external information are reliability and absorption indicators, because these often can be calculated 

from the failure rate of the equipment within the facility, wherein limits for maximum output or variance in 

delivery can be estimated. 

Looking at Figure 11, we can see that the validation method for most indicators was done using real case 

studies. Roughly two-thirds of the indicators mentioned were validated using real case studies, with the usage 

of hypothetical or no case studies having been comparable to each other. A potential reason is that most 

surveyed resilience indicators were established in relation to specific industries. The few hypothetical case 

studies were found in complex theoretical simulation-based resilience indicators and indicators which require 

very specific types of disruptions (e.g., one-off large-scale disasters). Indicators that were not validated using 

case studies were often simpler absorption-based indicators which serve as the basis for other indicators.  
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Figure 11: Distribution of Validation Method for the Surveyed Resilience Indicators. 

4.4 Resilience Indicator Selector Tool 

Results from the literature review were implemented in the form of an easy-to-use screening tool usable by 

industry and academia, to explore different resilience indicators. As discussed earlier, the  resilience indicators 

were sorted into 12 categories (M. M. El-Halwagi et al., 2020). Additionally, the tool also categories the 

resilience indicators based on their relevance to sustainability and circularity assessment. Thes screening tool 

allows users to filter the indicators by their resilience category, the calculation method used for obtaining the 

indicators (i.e. analytical, empirical or simulation based), whether the indicators are quantitative or qualitative 

and if the indicator is preventive or detection based. The selection tool was implemented using Microsoft 

Excel for ease-of-access with an accompanying Read Me page (see Figure 12) containing information on how 

the screening tool can be used.   

 

Figure 12: ‘Read Me’ Page of the ACCURATE Resilience Indicator Screening Tool. 



ACCURATE                                                       48 

 
 

   

 

An Input sheet (Figure 13) allows users to screen the resilience indicators by the aforementioned categories 

and indicator attributes. Accompanying the sorting buttons are in depth descriptions of each category to 

improve the understanding for the user for finding the best fitting indicator.  

 

Figure 13: Input Sheet in the ACCURATE Resilience Indicator Screening Tool. 

After a selection has been made the user is provided with meta data about the indicators satisfying the 

filtering criteria, including the name of corresponding research article, author names, access link to the 

article, application and scope and type of assessment (see Figure 13: Input Sheet in the ACCURATE Resilience 

Indicator Screening Tool.). The screening tool does not directly provide formulas or information on how to 

calculate each indicator; it primarily serves as a tool for finding relevant resilience indicators and points users 

to an appropriate source. 

 

Figure 14 Resilience Screening Tool Output Example 

The above figure shows an example of the outputs of the resilience indicator screening tool. For the given 

criteria, the tool will output a list of applicable indicators, a description of the indicator, the type of model 

used to assess the indicator, the method of assessing the indicator and the goal of the indicator. 

Additionally, the source of the indicator is given in the output sheet, it is just not shown above for the sake 

of space. 

 

  

 

 

Controllability in disaster-resilient design focuses on steering system behavior from initial to final states using 

admissible controls. It addresses dynamic issues and trajectories, crucial for managing system responses to 

different disaster scenarios.

 

Description of categories

Resilience indicator type 

The type of the indicator refers to the general category it focuses on 
All

     Resilience Indicators

  Screening tool for resilience indicators  

Inputs - Filtering

Selection Criteria

   ↑↑↑↑↑↑↑↑↑↑

- Instruction -

1/ Fill in the yellow cells that can be scrolled, as a filter to identify the most suitable resilience indicator(s) to your needs

2/ Click on the logo above  to launch the search and have access to your personalised inventory of resilience tools/indicators.

                                                                                                                                                 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

                                                                                                                                                 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

Indicator model

What type of model is used to calculate the indicator
All

                                                                                                                                                 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

Indicator goal

To determine if the indicator is to be used for prevetion/easing the effect of a disruption or if it is 

used to detect the propability of a disruption happening

All

                                                                                                                                                 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

Method

To determine if the calculated indicator should be based on qualitative expert opinions or a 

quantitative measure

All

Calculate

Analytical Empirical

Simulation

/Optimiz

ation

Prevention Detection Qualitative Quantitative

Product Recyclability In the procedure of product development and production, suppliers should pay attention to the recovery and recycling potential of scrap materials and consumables- - X X - X -

Pollution Production Capability In the manufacturing process, suppliers should develop effective methods to reduce pollution, control pollution and use clean energy without pollution partially, including water power, wind power, solar energy, etc.- - X X - X -

Environmental Management Suppliers should implement a set of systematic practices that reduce environmental impacts, including building organizational structure, carrying out the local environmental protection regulations and policy, applying for related certificatioins (eg., ISO 14, 001 and TQEM), and carrying out checking and control of environmental activities.- - X X - X -

Safety and health Supplieres should have the potential ability to formulate safety and health programs to protect personnel involved in the process. Especially, taking safety measures and creating standardized health and safety conditions are always deemed as the crucial sub-criterion for measuring this criterion- - X X - X -

Eco-design and green image In the procedure of product design, suppliers should consider awareness of enfironmental protection, i.e., designing a product with consideration of reducing material/energy consumption and environmental impacts , avoiding or reducing use of hazardous materials during the whole product lifecycle, and is easily decomposed at the end of product life. - - X X - X -

Production facilities It is a maximum conceivable output of an economy in a given time period with the proper utilization of available resources. Availability of high level of production facilities and capacities lead to high chance of supplier selection. This factor includes process flexibility, volume flexibility, training, and promotion of JIT concept, handling and packaging capability, machine capacity and capability, facilities for measurement, calibration and testing .- - X X - X -

Trustworthiness The Reliability indicator  measures the consistency and trustworthiness of suppliers and processes in meeting quality standards.- - X X - X -

Supply chain density Supply chain density measures the quantity and spacing of nodes (supply chain proceses) in a supply chain. It can be calculated based on the clustering of nodes and their geographical distribution to assess resilience.- - X X - - X

Indicator model Indicator goal Method

Resilience Indicators Description - Working Principles
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5 Sustainability Indicators for a MaaS System 
This chapter describes the methodology, indicator selection criteria, and recommendations for evaluating the 

sustainability performance of MaaS systems in the ACCURATE project.  The chapter discusses the assessment 

methodology and relevance of both environmental sustainability indicators as well as social sustainability 

indicators to the ACCURATE project. 

5.1 Environmental Sustainability Indicators 

5.1.1 Environmental Life Cycle Assessment 

Environmental Life Cycle Assessment (eLCA) has emerged as one of the most widely used tools for quantifying 

the lifecycle environmental impacts of products and production systems. As shown in Figure 15, according to 

the ISO 14040 standard (Standardization, 2006), eLCAs consist of four stages.  

 

Figure 15: Stages in an environmental life cycle assessment according to the ISO14040 standard. 

1. Defining the goal and scope of the study: In this stage, practitioners set the boundaries of the system, 
specify the assumption to be used, and set the functional unit of the product or process to be studied. 

2. Conducting the Life Cycle Inventory (LCI) data collection: During this stage, all input and output flows 
linked to each life cycle stage of the product or process are collected. Such flows include inputs 
regarding resources and materials and outputs in emissions, waste and downstream material. 

3. Assessing the life cycle impact (LCIA): This stage analyses LCI data and links them to the environmental 
impact categories and indicators.  

4. Interpretation of the results: During this stage, practitioners interpret the results according to the 
defined goal and scope and address all the uncertainties and accuracy of the results. 
 

It should be noted that these stages should be applied in an iterative manner, and the assessment 

methodology should be refined based on the obtained results and their interpretation. Several commercial 

software are available for conducting eLCAs, with notable examples including  GaBi2, SimaPro3, and OpenLCA4. 

This report does not aim to provide an in-depth introduction to eLCAs; it primarily discusses the generation 

of metrics for assessing the sustainability performance of MaaS systems based on eLCAs. Readers interested 

in obtaining an in-depth understanding of the various stages in eLCAs are directed to the LCA compendium 

book series (LCA Compendium - The Complete World of Life Cycle Assessment, 2014-2023). 

 
2 www.sphera.com 
3 www.simapro.com 
4 www.openlca.org 
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5.1.2 Manufacturing Sustainability Assessment 

When quantifying the environmental impacts of manufacturing systems and identifying potential 

improvements that can be made to system from an environmental sustainability point of view, eLCAs can be 

used to establish both qualitative and quantitative measures of sustainability performance. The process of 

planning activities and/or actions that improve the sustainability of manufacturing processes has been 

defined as manufacturing sustainability assessment (MSA) (Ramanujan et al., 2022). From an operational 

perspective,  Lee and Lee (2014) derive an operational definition for MSA by defining manufacturing 

sustainability as a “measure of manufacturing performance metrics of product design, process plan, and 

production system with respect to the environment, economy, and society, when executing a process plan for 

a product design in a given production system.” Extending this definition, the authors define MSA as a process 

“determine a value of the manufacturing sustainability metric, which is a balanced performance of product 

design, process plan, and production system with respect to environmental, economic, and social aspects of 

sustainability”. 

The primary goal of performing MSA in the ACCURATE project is to identify, 

1. the magnitude of change in environmental sustainability performance of production systems 
(operating in MaaS systems) under potential disruptions and, 

2. the effect remedial actions (e.g., changing production planning, reconfiguring production lines) on 
the environmental sustainability performance of production processes within MaaS systems.  
 

For this, DT models that can model functional performance of the production systems (e.g., WIP, lead time, 

production rates) need to be extended to also quantify their environmental sustainability performance. With 

this goal, only quantitative environmental sustainability metrics are investigated in the the ACCURATE project. 

Quantitative sustainability metrics in MSAs typically take the form of environmental impact indicators based 

on eLCAs, and KPIs that can encode specific dimensions of environmental impacts. They are distinguished in 

further detail below. 

5.1.3 Quantitative sustainability metrics for manufacturing sustainability assessment 

Environmental impact indicators based on eLCAs: 

Results from eLCAs are expressed using environmental impact indicators that typically quantify the 

environmental impact of the analysed system on one or more impact categories. Based on the LCIA method 

considered, the methodology can be classified into: 

1. Single issue methods:  Single issue methods only address one impact category (e.g., climate change, 

water scarcity) and ignore the environmental impacts of the analysed system on other  impact categories.  

For example, the LCIA method IPCC 2013 GWP 100a (Ometto et al., 2014) only computes potential climate 

change related impacts due to the global warming potential (GWP) of green house gases emitted from 

the analysed system. Single issue methods are not in compliance with ISO 14044 standard as it is not 

allowed to leave out impact categories that may have a significant environmental impact. 

 

2. Multiple issue methods: Multiple issue methods have broad (yet limited) coverage of impact categories. 

For example, a multiple issue method such as ReCiPe 2016 midpoint (Huijbregts et al., 2017), can compute 

multiple environmental impact indicators, including, GWP, ozone depletion potential, terrestrial 

acidification potential, fine particulate matter formation, etc.  Several, established multiple issues 

methods such as a ReCiPe 2016 midpoint, ReCiPe 2016 endpoint, CML (baseline), USEtox, Environmental 

Footprint, are incorporated in to commercial LCA software. Interested readers are referred to Table 1, 

Page 7 of the openLCA documentation on LCIA methods for a comparison for a comparative analysis of 
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the above methods (Acero et al., 2015). The European Commission has introduced two environmental 

footprint methods, comprising the Product Environmental Footprint (PEF) and Organisation 

Environmental Footprint (OEF) for harmonised assessment of environmental indicators, with the aim of 

improving transparency in reporting and decision-making. The technical details of the EF methods are 

laid down in the Commission Recommendation (EU) 2021/2279 (Annexes I-II-III-IV). Additional guidance 

documents on the EF methods have been developed during the first applications of the PEF/OEF in the 

pilot phase (2013-2018) and in the transition phase (2019-2022) (European Commission: Joint Research 

et al., 2022). 

 

When discussing the choice of single issue and multiple issue methods for quantifying environmental 

sustainability indicators, specific attention should be given to the representativeness and the 

comprehensiveness of the data that needs to be collected in the LCI stage. In terms of data collection burdens, 

multiple issue methods typically require that a more comprehensive LCI model of the production system in 

constructed, when compared to a single issue method. To illustrate, if the aim of performing MSA is to assess 

climate change related impacts of the system using a method such as IPCC 2013 GWP 100a, the LCI model for 

the production system only needs to include any direct greenhouse gas emissions as well as energy/resource 

flows (e.g., electricity usage, lubricating oil, materials) whose production entails significant greenhouse gas 

emissions. In several production systems, greenhouse gas emissions from electricity use outweigh other 

flows, which can simplify LCI data collection.  On the other hand, applying multiple issue methods typically 

requires a more comprehensive analysis of energy/resource flows in the production system, as different flows 

can contribute to different environmental impact categories disproportionality (Campitelli et al., 2019).    

 

An associated consideration is the need for primary LCI data collection, so that the resulting environmental 

sustainability indicators accurately characterise the analysed system.  Conducting process-based eLCAs 

requires collecting and quantifying LCI data of the employed processes, e.g., energy use, water and material 

consumption, and process emissions (Seghetta & Goglio, 2020). Background data, e.g., from commercial LCI 

databases such as ecoinvent5, is especially useful when primary data (i.e., actual data from production) 

collection is challenging, or during early design stages when primary data is not available at all. On the other 

hand, background data is inherently uncertain and therefore affects the accuracy of the results, which must 

be taken into account during the analysis (Blok et al., 2007). That is because, in practice, there is considerable 

variation between manufacturing process implementation, depending on the specific process parameters 

and the used machine tools (Boettjer et al., 2021). Thus, background data does not fully account for process 

variations, which can significantly impact resource consumption and emissions production. In cases where 

sufficiently representative background LCI models are unavailable, primary LCI data should be collected to 

increase the accuracy of the computed environmental sustainability indicators.  The choice of indicators 

consequently dictates primary data collection burdens from the production system.  Recent research projects 

have aimed to address data collection challenges through improving product and process digitalisation. The 

s-X-AIPI project aims to build artificial intelligence enabled sustainability monitoring tools for process industry 

(self-X Artificial Intelligence for European Process Industry digital transformation, 2022). The RECLAIM project 

(RE-manufaCturing and Refurbishment LArge Industrial equipMent, 2019) and the METAFACTURING project 

(Data and METAdata for advanced digitalization of manuFACTURING industrial lines, 2022) explore the use 

of Industry 4.0 technologies such as digital twins and computer vision for automated estimation of life cycle 

inventory data and computation of streamlined environmental sustainability performance metrics. Even so, 

the adoption of digital technologies for automated manufacturing sustainability assessment remains 

challenging and is not yet widely adopted (e.g., by industrial partners in the ACCURATE project). 

 
5 https://ecoinvent.org/database/ 
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Lastly, the interpretation of results based on computed environmental sustainability indicators is a significant 

concern. In other words, decision-makers should be able to understand 

1. the significance of the computed environmental sustainability indicator(s),  
2. the implications on the manufacturing system and activities/processes that significantly contribute 

to the indicators, and  
3. available decision-levers in the systems to mitigate the environment impacts of the system.  

 

This can be challenging in the case of eLCA based indicators as they present results in measurement units 

not directly related to manufacturing systems, and correlations between the indicators themselves can be 

hard to discern (Glisic et al., 2024).   

 

Recent research has focused on advancing indicator selection, assessment and interpretation for advancing 

eLCAs. The ORIENTING project (Operational Life Cycle Sustainability Assessment Methodology Supporting 

Decisions Towards a Circular Economy, 2020) performed a critical review of LCA methodologies, with the aim 

of advancing life cycle sustainability assessment (LCSA) towards the integrated assessment of environmental, 

social, and economic impacts. Results from the project (Horn et al., 2021) discuss the relevant merits and 

weaknesses of LCIA methodologies and recommend specific data quality requirements, e.g., for compliance 

with the PEF method. To illustrate, if a process is run by a company, e.g., an original equipment manufacturer 

(OEM), company-specific data on both the manufacturing activity and direct emissions is recommended. In 

the case of a process run outside the company, with access to specific information, company-specific data is 

preferred, but an EF compliant secondary dataset from trusted LCA data sources is also acceptable. Finally in 

the case of of a process run outside the company, without access to specific information, an EF-compliant 

secondary data set (in aggregated form) or a secondary data set compliant to the International Life Cycle Data 

System (ILCD) should be provided. Given the challenges with primary data collection mentioned in the 

previous paragraph, sourcing high-quality, process-specific inventory data can be challenging. Such challenges 

are further compounded in the case of MaaS, where portions of the manufacturing process takes place 

outside the physical boundary of OEMs. Therefore, process-specific data for sustainability critical 

manufacturing activities may be unavailable as they occur outside the facilities owned by an OEM. 

 

Key-performance index based sustainability metrics: KPIs have been proposed as an approach for supporting 

sustainability-related decision-making in manufacturing. KPIs, when appropriately formulated, can overcome 

certain limitation in eLCA based indicators including, high time-and cost-burdens for computation, limited 

relevance for decision-making, and interpretability. A KPI, or more broadly, an indicator, can be defined as a 

parameter that provides more information on significant phenomena, relevant to the specified performance 

objectives (Feng & Joung, 2010).  Prior literature has identified two broad approaches for defining relevant 

KPIs in sustainable (Kibira et al., 2017). 

• Bottom-up approach: In this approach, metrics that are either currently in use or deemed necessary 
to be measured, are to define KPIs that are a basis for continuous development. KPIs defined using 
the bottom-up approach are typically directly quantified based on operational data from 
manufacturing systems. Examples for such KPIs include, energy efficiency of manufacturing systems, 
percentage of recycled materials used in manufacturing, waste produced in manufacturing, etc. Thus, 
such KPIs are typically formulated from unit process-level life cycle inventory data measurements. 
Given that bottom-up KPIs are defined in close association to the manufacturing system being 
analysed, they are often easier to interpret, and valuable for modelling and improving system- and 
process-level sustainability performance (Smullin et al., 2016). However, a shortcoming of KPIs 
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defined using a bottom-up approach is that they do not necessary estimate the global performance 
of the system; multiple KPIs may be required for this purpose. Furthermore, such KPIs can be in 
conflict with each other, requiring MCDM and trade-off analysis for improving system-scale 
performance. Furthermore, KPIs defined using a bottom-up approach may not necessarily capture an 
oranisations’ sustainability goals or targets. 
 

• Top-down approach: In contrast to the bottom-up approach, in the top-down approach, the definition 
of KPIs in sustainable manufacturing is based on the overall sustainability goals of an organisation. 
Therefore, KPIs defined using the top-down approach often measure the sustainability performance 
over a collection of unit manufacturing processes (as opposed to a single process) in the dimensions 
relevant to the overall organisational goals (Kibira et al., 2017) . Consequently, such indicators may 
not be easy-to-interpret when the objective is to improve the performance of a specific unit process 
or a process parameter. However, KPIs defined using the top-down approach are well-suited for 
reporting sustainability performance of manufacturing systems, given they are defined at a system-
level, and incorporate dimensions of quantification relevant to the specific organisation. 

 

In both the approaches discussed above, a generalised procedure for defining relevant KPIs involves the 

following (Garetti & Taisch, 2012; Rakar et al., 2004). 

1. Defining the overall sustainability goals and objectives  
2. Identifying and defining KPIs (based on the selected approach) 
3. Shortlisting and selection of relevant KPIs 
4. Implementing data collection systems for quantifying the defined KPIs 
5. Implementing a monitoring plan for the KPIs, ensuring continuous process improvement. 

 

In this process, it is important to consider the which dimensions of environmental sustainability are being 

measured by the selected KPIs, and if they are a significant source of environmental impact for the 

manufacturing system being analysed. It is also important to clearly specify the boundaries of measurement 

(as per the selected KPI), and if it includes all components of the process/system that affect the selected KPI. 

Finally, it is important to note that in practice, the selection of relevant KPIs is often limited by the 

requirements on data collection and reporting. Therefore, a critical evaluation of the challenges and benefits 

of implementing and monitoring selected KPIs is often necessary. 

5.1.4 Recommendations for Manufacturing Sustainability Assessment in ACCURATE 

To understand the availability of data for performing LCA based manufacturing sustainability assessment 

within the scope of the ACCURATE project, the following activities were conducted across all three 

ACCURATE pilot partners.  

• Detailed interviews were conducted with the ACCURATE pilot partners to understand the importance 
of sustainability-related process performance in terms of the current manufacturing setup, as well as 
extensions to a MaaS system. 

• A data collection template (Section 7.1)  was distributed to the pilot partners to understand the 
availability of primary and secondary LCI data. Follow up discussions were also conducted to 
understand challenges in collecting LCI data requested in the data collection template. 

• Finally, multiple discussions were conducted with WP3 meetings (Task 3.1) to understand 
requirements for integrating MSA assessment into the DES-based production DT models being 
developed in WP3. 
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Results from these discussions revealed that, 

• Climate change-related impacts were prioritised by the ACCURATE pilot partners 

• Due to the lack of existing infrastructure for primary inventory data collection, process specific-
company data is currently unavailable. This knowledge gap should be filled through additional 
measurements made on the manufacturing lines, as well as through using high-quality secondary 
datasets (e.g., using commercial data providers). 

• ACCURATE pilot partners did not have existing agreements with upstream/downstream suppliers 
regarding sharing process-specific inventory data. Furthermore, it was suggested that it would be 
challenging such information for potential MaaS providers. Consequently, high-quality secondary 
datasets (e.g., commercial data providers) should be used to fill existing data gaps. 

• Finally, due to the lack of complete visibility on processes, the use of streamlined indicators (not 
based on LCA) for critical processes (identified by OEMs) were suggested as a means for quantifying 
and monitoring sustainability performance related to material use. Such indicators include: 

o Process wastes (e.g., expired components, scrap, other wastes) produced per 
component/process. 

o Consumption of materials (e.g., consumables, tools, etc.) per component/process. 
 

The selection of environmental sustainability indicators for each UC is discussed in Chapter 7. 

 

5.2 Social Life Cycle Analysis (sLCA) Indicators 

5.2.1 Introduction to SLCA 

Social Life Cycle Assessment (sLCA) has become an important methodology within the framework of LCA, 

allowing for the evaluation of social and socio-economic impacts in the entire life cycle of products and 

services, from raw material extraction to end-of-life disposal. While eLCAs primarily focus on environmental 

effects such as resource use and emissions, sLCA extends the evaluation to social aspects, such as labour 

conditions, community well-being, and human rights. sLCA is increasingly recognised as vital to achieving 

comprehensive sustainability (Haslinger et al., 2024). sLCA adopts the so-called ’life cycle thinking’ approach. 

This perspective ensures that all stages of a product’s life, such as extraction, production, distribution, use, 

and disposal—are considered for their social impacts in each of these different stages. The United Nations 

Environmental Protection (UNEP) guidelines on sLCA establish a more structured framework to categorise 

stakeholders and assess these social impacts, focusing on groups such as workers, local communities, 

consumers, and society as a whole (Andrews et al., 2009). These stakeholder groups have impacts through 

different aspects of production and also consumption processes. This makes this tool important to measure 

the ‘social’ footprint of businesses and organisations alike. The sLCA methodology typically follows four main 

steps (Andrews et al., 2009):  

1. defining the goal and scope,  
2. performing life cycle inventory analysis,  
3. conducting an impact assessment, and  
4. interpreting the results 

 
This process often requires both qualitative and semi-quantitative data, which often makes it difficult to 

measure. While some impacts can be quantitatively measured (such as absenteeism or injury rates), others, 

such as worker satisfaction and social equity, require interpretative frameworks to measure efficiently 

(Haslinger et al., 2024). 
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The application of sLCA to MaaS stakeholders introduces a new set of complexities. MaaS enables companies 

to lease manufacturing capacity on-demand rather than engaging in full-scale production themselves. This 

also includes the lease of data and software digitally as the formal definition refers to MaaS as a distributed 

system of production in which resources (including data and software) are offered as services, allowing 

manufacturers to access distributed providers to implement their manufacturing processes. Such servitisation 

of manufacturing resources contributes significantly to production flexibility and responsiveness, enabling 

production on demand for many product categories. Suppliers of manufacturing systems and of integration 

technologies design and offer interoperable services in close partnership with manufacturing companies, 

while other providers in the value chain can offer additional services. Secure, real-time data exchange 

between the companies involved enables quick response times (Twin Green and Digital Transition 2024 

(Horizon-CL4-2024-Twin-Transition-01), 2024). 

While this model offers flexibility and scalability, it complicates the traditional approach to identifying and 

engaging stakeholders in sLCA frameworks (Andrews et al., 2009). In traditional manufacturing, stakeholders 

are typically easy to identify due to direct involvement in production processes. In contrast, the model in 

MaaS introduces layers of indirect relationships, particularly between those leasing manufacturing capacity 

and users of these services. Performing sLCAs for MaaS systems can also considered to be more complex than 

similar assessment on traditional manufacturing value chains. This stems from the fact that,  

• In traditional value chains, OEMs have long-term agreements and relationships with suppliers, which 
eases data collection on stakeholder impacts. On the other hand, MaaS systems are designed to be 
more agile and flexible, implying that stakeholders and associated impacts significantly vary over 
time. 
 

• System boundaries are more well-defined in traditional manufacturing. For example, in the case of 
in-house manufacturing, boundaries can be drawn around stakeholders that have a direct 
involvement with the OEM. In the case of multi-tiered suppliers, boundaries for sLCAs are set based 
on specific degree (e.g., 1st-degree suppliers, 2nd-degree suppliers, etc.) based on the visibility on the 
value chain and ease of data collection. However, in the case of MaaS, where stakeholders and 
beneficiaries can vary (temporally and geographically), it is more challenging to define consistent 
system boundaries, identifying stakeholders in manufacturing SCs. 
 

Regulatory developments, e.g., the Corporate Sustainability Reporting Directive (The European Parliament, 

2022), Ecodesign for Sustainable Products Regulation (The European Parliament, 2024) can potentially ease 

data collection burdens for sLCAs by mandating reporting on specific social impacts on stakeholders. However, 

to develop a realistic sLCA framework for MaaS systems in the current environment, it becomes essential to 

develop a more focused perspective, i.e., assessing the social sustainability performance from the perspective 

of individual MaaS providers. 
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Figure 16: System boundary and stakeholders included in sLCA of MaaS systems. Scope for holistic analysis is 
shown in the left panel the focused scope of analysis in the ACCURATE project is shown in the right panel.  

As shown in Figure 16, for a holistic sLCA of MaaS systems, multiple actors in the system should be taken into 

account, including OEMs, MaaS providers, MaaS facilitators, suppliers to MaaS providers, and OEMs. 

Furthermore, stakeholders such as workers, consumers, value chain actors, local communities, and society 

need to be identified with respect to each actor in the system. As described earlier, framing and analysing 

social sustainability performance with such a broad scope is highly information and time intensive, further 

complicated by the fact that the MaaS system can change over time. To reduce complexity, and enable a 

feasible methodology, the ACCURATE project restricts the sLCA assessment to a single MaaS provider as 

shown in the right panel in Figure 16. Such analyses could be potentially extended to cover the MaaS system, 

through combining assessments for individual actors. However, this aspect will not be investigated within the 

scope of the ACCURATE project, due to the inability to collect social sustainability related data for  a complete 

MaaS system. Furthermore, in the suggested scope of the analysis, stakeholders associated with a MaaS 

provider, including workers, consumers (clients of the MaaS provider) and specific value chain actors are taken 

into account, while stakeholders not directly involved with the provision of the MaaS service are excluded. 

The exclusion criteria for stakeholders are further explained below. 

5.2.2 Exclusion Criteria for MaaS Stakeholders 

To maintain a clear focus on leasing manufacturing capacity, it is necessary to establish exclusion criteria that 

filter out stakeholders not directly relevant to a MaaS provider. This narrows down the considered 

stakeholders and ensures the sLCA remains focused on MaaS providers. Specifically, two inclusion/exclusion 

criteria are specified in our analysis 

1. The scope of the analysis only includes stakeholders directly interacting with the analysed MaaS 
provider. Thus, stakeholders for all other actors in the MaaS system are excluded. 

2. For the analysed MaaS provider, only stakeholders that are directly involved in maintaining or 
supporting the leasing of manufacturing capacity for the MaaS provider (i.e., primary function of a 
MaaS provider) are included.  

 

This targeted approach ensures that the analysis captures relevant social impacts, rather than addressing 

broader or unrelated aspects of traditional manufacturing processes. It also ensures that the analysis remains 

centred on a MaaS provider, which in return also simplifies the evaluation process and improving the accuracy 

of social impact assessments. The following stakeholders are not considered as being directly involved in 

maintaining or supporting the leasing of manufacturing capacity: 
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• Supply and distribution (upstream and downstream) stakeholders: Stakeholders involved in the SC 
(upstream) and distribution and sales (downstream) processes are excluded from our analysis as they 
are external to the MaaS provider. Upstream stakeholders are involved in supplying raw materials and 
components, which are important to production but not directly related to leasing manufacturing 
capacity. Downstream stakeholders handle the distribution and sales of finished products, which are 
also important for market delivery but do not directly relate to the leasing of manufacturing facilities. 

• Full-Service manufacturing stakeholders:  Full-service manufacturing companies that provide end-to-
end production processes (i.e., contract manufacturers) are excluded from the scope of our analysis 
unless they offer leasing services. Only including stakeholders that provide leasing services ensures 
the analysis remains concentrated on MaaS providers. 

Other stakeholders relevant to sLCA were identified based on the UNEP sLCA guidelines (Andrews et al., 2009) 

and classified based on their direct relevance to a MaaS provider, i.e., assessing whether they directly involved 

or support the activity of leasing manufacturing capacity. The following stakeholders were analysed. 

Value chain actors 

• Manufacturing and production providers: Comprises of stakeholders representing those that offer 
these leasing services for manufacturing equipment, facilities, or capacity. These stakeholders are 
central to the concept of a MaaS provider and are therefore included in the analysis. 

• Service providers: Comprises of stakeholders providing integration services, such as software 
solutions, maintenance, or technical support essential for leased facilities. These stakeholders ensure 
the smooth operation and maintenance of leased manufacturing capacity and are therefore included 
in the analysis. 

• SC & logistics providers: Such stakeholders are excluded unless they offer services essential towards 
maintaining manufacturing capacity, i.e., they are directly involved with the internal manufacturing 
activities of a MaaS provider. 

• Financial & legal service providers: These stakeholders facilitate the necessary contractual and 
financial structures to support leasing agreements that maintain the manufacturing capacity of MaaS 
providers; they are included in the analysis. 

 

Consumers  

• Clients of MaaS providers: Comprises of stakeholders that lease the actual manufacturing capacity 
from a MaaS provider. Therefore, these stakeholders represent end users, i.e., businesses and  
organisations that utilise the MaaS systems to meet their manufacturing needs. These stakeholders 
are included in the analysis as they are the primary reason for the existence of MaaS providers. 

 

Society & Local Community 

• Society and local community: Stakeholder groups corresponding to broader society and local 
communities are excluded as they are not directly involved in maintaining or supporting the leasing 
of manufacturing capacity for a MaaS provider.  Local communities might experience indirect effects 
such as changes in local economic activities or environmental impacts, due to the activities of a MaaS 
provider. Similarly, broader societal impacts such as shifts in industry standards or public policy may 
influence MaaS providers. Analysing such interactions is beyond the scope of the proposed analysis,  

 

Workers 

• Workers: Comprises of stakeholders that provide human capital essential for maintaining 
manufacturing capacity of a MaaS provider. Therefore, they are included in the analysis scope. 
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5.2.3 UNEP Guidelines and Alignment with sLCA Analysis of MaaS 

The proposed stakeholder inclusion/exclusion criteria for performing  sLCA of MaaS providers is compared 

with the UNEP sLCA guidelines (Andrews et al., 2009) to evaluate the prioritisation and limitations of the 

proposed framework.  The UNEP guidelines provide a standardised framework for conducting sLCA and 

identifying and evaluating the social impacts of various stakeholders. It should be noted that this framework 

is context-agnostic. The UNEP sLCA guidelines outline the following stakeholder categories: 

1. Workers: Individuals directly involved in production pro- cesses. 
2. Local Community: Residents affected by manufacturing activities. 
3. Society: Broader societal impacts, including social and economic effects. 
4. Consumers: End-users of the products. 
5. Value Chain Actors: Suppliers, distributors, and partners in the production process. 

 

 

Figure 17: Mapping of Maas Stakeholders to UNEP Specific Stakeholders. 

Figure 17 shows the mapping of stakeholder categories from the UNEP guidelines to those suggested for 

performing sLCA of MaaS providers, and they are summarised below. This mapping aims to ensure that 

relevant social impacts are considered, and that the assessment is both robust and comparable to other sLCA 

studies. This approach not only enhances the reliability and transparency of the assessment but also 

facilitates ongoing compliance with best practices in social sustainability (Andrews et al., 2009).  

• Manufacturing and Production Providers: UNEP Stakeholder mapping: Workers & Value Chain Actor 
- These stakeholders correspond to the Workers and Value Chain Actors in UNEP guidelines, focusing 
on those directly involved in production, thus aligning with the core service providers in the MaaS 
model. 

• Service Providers (e.g., Software, Maintenance): UNEP Stakeholder mapping: Value Chain Actor - 
Service providers in MaaS systems can be mapped with Value Chain Actors in UNEP guidelines, 
focusing on essential support services necessary for maintaining leased manufacturing capacity. 

• Supply and Distribution Stakeholders: UNEP Stakeholder mapping: Value Chain Actors - Value Chain 
Actors such as suppliers and distributors are included in UNEP guidelines. However, the proposed 
criteria exclude these stakeholders unless they are directly related to leasing services, aligning the 
focus with on MaaS providers. 
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• Financial and Legal Providers: UNEP Stakeholder mapping: Value Chain Actors - While not explicitly 
detailed in UNEP guidelines, in the context of MaaS providers, these actors offer essential support for 
maintaining operations, including financial and legal frameworks important for leasing arrangements 
in the MaaS model. 

• MaaS Clients: UNEP Stakeholder mapping: Consumers - These stakeholders lease the manufacturing 
capacity and are direct stakeholder beneficiaries of the MaaS model, similar to consumers in 
traditional business settings. 
 

As discussed above, the sLCA model for MaaS providers interprets the stakeholder categories of workers and 

consumers as manufacturing/production providers (i.e., human capital) and clients for the MaaS provider. 

Furthermore, value chain actors in the perspective of the MaaS provider, include stakeholders that are directly 

interacting with a MaaS provider, and are necessary for provisioning of the intended MaaS services. Thus, for 

these subcategories, stakeholder impacts, including labour conditions, health and safety, business ethics, 

relationship with clients, and service impact can be assessed. Stakeholder groups related to society and local 

communities are not present in the proposed sLCA framework for MaaS providers, in line with the 

inclusion/exclusion criteria suggested above. This simplification limits the scope of impact assessment, i.e., 

impacts on society and local communities (e.g., job creation, upskilling, increasing societal resilience, etc.)  

cannot be assessed by the proposed framework. However, it is viewed as necessary to retain the focus of the 

analysis on the provision of MaaS services, and limit data collection burdens (e.g., due to large geographic 

dispersion of MaaS providers). 

5.2.4 Implementation of sLCA in the ACCURATE project 

The implementation of this framework involves several steps to identify and evaluate the relevant 

stakeholders effectively. sLCA typically measures stakeholder impacts using both qualitative and quantitative 

measures. However, in the context of the ACCURATE project a significant challenge is (quantitatively) evaluating 

stakeholder impacts as result of specific changes made on the production floor. To illustrate, if a production 

line is reconfigured with a view of making it more resilient to supply disruptions, the resulting impact on worker 

well-being (e.g., due to changes in shifts, adjustments of tasks) is challenging to quantify from a purely 

simulation-oriented approach. On the hand other outcomes, e.g.,  on-time deliveries, can serve as a reasonable 

proxy for impact on stakeholder such as MaaS clients. Considering such challenges, the following conceptual 

approach is proposed for conducting sLCAs within the scope of the ACCURATE project. 

 

 

Figure 18: Proposed conceptual approach for implementing sLCA for MaaS providers. 

As shown in Figure 18, the process begins with identifying potential stakeholders based on the selected MaaS 

provider(s). A preliminary list of stakeholders can be based on industry reports and the UNEP sLCA guidelines 
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to ensure that all potential stakeholders are considered in the initial phase. Then the proposed 

exclusion/inclusion criteria is finalised (based on data collection burdens, intended analysis goals, etc.) and 

applied to arrive at a final stakeholder list. A detailed review of capacities and industry focus of these 

stakeholders is performed to identify their role in the MaaS systems and to identify potential impacts on these 

stakeholders due to production-specific changes made by the MaaS provider(s). Next, the ability of 

existing/feasible simulation production models to capture changes in the identified impact categories is 

assessed, and the scope of the overall analysis, including the selected stakeholders, impact categories, and 

simulation models are subsequently refined.  

 

 

Figure 19: Illustrative application of proposed sLCA methodology to TRO UC2. 

 

Figure 19 presents an illustrative application of the proposed conceptual model to TRO UC2. Herein, the focus 

in on supporting production planning and control under disruptions, including scheduling, dispatching, and 

monitoring for lot excursions. In this illustrative example, we consider that decision-making support is provided 

using a production-level DT using DES modelling.  Based on the UC, workers, consumers, and value chain actors 

are identified as potential stakeholders through the UNEP sLCA framework described earlier. Due to the fact 

that the UC primarily focuses on monitoring and reconfiguring TRO’s internal production planning to better deal 

with disruptions, the selected exclusion criteria limits stakeholders to those that can directly affect the 

production process (i.e., workers). Following this, relevant social impact categories are identified for this 

stakeholder group, with an analysis on whether such impacts can be quantified using the proposed DES-based 

DT. Finally, proxy metrics are identified for quantifiable metrics and further refinement of stakeholder impact 

categories are conducted.  

Subsequent efforts in the ACCURATE pilots (WP 7) will explore the implementation of the proposed conceptual 

model across the identified UCs. 
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6 Ontologies for Architecting Circular and Sustainable Manufacturing-as-a-
Service Systems 

This chapter outlines a methodology for achieving circularity and sustainability in MaaS systems. The 

complexity of MaaS systems, which arises from the need to consider all possible combinations of MaaS 

providers, potential suppliers, machinery, and process configurations, and to assess the sustainability of each 

combination, is proposed to be addressed in two steps. The first step involves information integration and 

retrieval using ontology as a core model, with a sustainability score as the target. To this end, the initial 

ontology model, which integrates the concept of MaaS, is implemented by extending the Industry Ontology 

Foundry (IOF) ontology and is evaluated using a use case. The second step, which involves the derivation of 

an optimised manufacturing ecosystem using DTs, is considered future work. 

6.1 Introduction 

The CE concept aims to decouple value creation from resource consumption, governed by the principles of 

reduce, reuse, recycle, refuse, rethink and repair (6R) (Jawahir & Bradley, 2016). Achieving circularity within 

manufacturing industries has been a topic of research for many years (Aher & Ramanujan; Blomsma et al., 

2019; Pieroni et al., 2021). The concept of circularity can be applied to various dimensions of a manufacturing 

system, such as business, production processes, or products (Aher & Ramanujan). An important aspect of 

circularity is that it must also be sustainable to be meaningful (Blomsma et al., 2019; Pieroni et al., 2021). 

Therefore, state-of-the-art approaches for establishing a CE typically use a bottom-up method, identifying 

potential initiatives first and then quantifying their circularity and sustainability performance. (Blomsma et 

al., 2019; Pieroni et al., 2021). 

At the same time, manufacturing companies are increasingly adopting agile methodologies in production to 

meet the changing customer requirements and the demands of global markets (Vathoopan et al., 2021; Zhang 

et al., 2020). They are incorporating approaches like MaaS to achieve greater flexibility and reconfigurability 

in their ecosystems (Cheng et al., 2017). The goal of MaaS is for manufacturers to provide manufacturing 

capabilities as a service, which other manufacturers can utilise on demand (Cheng et al., 2017). Given that 

circularity is increasingly becoming an essential requirement in manufacturing, several companies are 

experimenting with CE initiatives (Blomsma et al., 2019; Pieroni et al., 2021). However, the complexity and 

variability of agile manufacturing ecosystems make assessing circularity and sustainability a challenging and 

time-consuming task. This highlights the need for systemic modelling approaches and automated assessment 

techniques. 

This research aims to address the above problem from a top-down approach, assuming that a company aims 

to introduce a circularity initiative with a targeted sustainability (performance) score. Thus, the main goal is 

to identify an ecosystem that achieves the targeted sustainability score by evaluating all combinations of 

suppliers, production systems, and MaaS providers. Consequently, this paper addresses the following 

research question: How can sustainability be systematically achieved in a MaaS-based flexible and circular 

manufacturing ecosystem by evaluating all possible combinations of participating entities? It introduces a 

two-step method for addressing this question. The first step involves integrating and retrieving information 

on all possible manufacturing ecosystem combinations for the given sustainability score using an ontology. 

The second step calculates and derives an optimised ecosystem by evaluating all possible ecosystem 

combinations from the previous step. 
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6.2 Background and Related Work 

6.2.1 Manufacturing as a Service 

The term MaaS is mostly associated with cloud manufacturing in literature, as cloud manufacturing is seen to 
enable MaaS. Cloud manufacturing refers to making available manufacturing and associated services on the 
cloud, to the consumers on a demand basis (Bouzary & Frank Chen, 2018; Cheng et al., 2017; Zhang et al., 
2020). Most of the works in this direction addresses the technologies for virtualisation of manufacturing 
resources, and services, service descriptions for optimal discovery, service matching and composition, and 
business models (Cheng et al., 2017; Zhang et al., 2020). MaaS, when considered as a term by itself can be 
understood as a some companies offer their manufacturing ecosystem as a service, and some companies avail 
and integrate this service in their manufacturing ecosystem (Cheng et al., 2017; Diedrich et al., 2022).  

6.2.2 Ontology and Knowledge Graph 

The term ontology has been originated in the domain of philosophy, however it has been adopted and evolved 
within the domain of computer science (Staab & Studer, 2013). According to Hurtado and Nudler (2012), the 
term ontology is a description or formal specification of a program, that include the concepts and relationship 
of the participating agents or a community of agents. Ontologies were introduced to achieve semantic and 
syntactic interoperability among heterogeneous enterprises and systems (Hurtado & Nudler, 2012; Staab & 
Studer, 2013). They provide a systematically curated vocabulary that is both machine and human readable 
(Hurtado & Nudler, 2012; Staab & Studer, 2013). The concept of ontology when combined with a graph data 
model yields a knowledge graph that is a form of knowledge base. A knowledge graph can be understood as 
an instance of ontology that comprises specific information of real-world entities (Kasie et al., 2017). 
 
Ontologies are classified into four hierarchical level (Sapel et al., 2024). Ontologies that lie in the first layer are 
top level ontologies, that are highly generic and applicable to various domains. The ontologies that lie in the 
second layer are the core ontologies that describe common entities of a specific domain. The third layer, 
domain specific ontologies describe properties specific to some sub-domains. Application level ontology that 
lies in the fourth layer describes task specific ontology within a specific domain. 

6.2.3 Ontologies for Knowledge Management 

Knowledge curation and derivation are vital components of decision-making. A systematic study by Martins 
et al. (2019) reveals that ontologies have been applied for knowledge curation and derivation since the early 
2000s. Their study clarifies that the application of ontology for knowledge management spans various 
domains, with only a few works found within the manufacturing domain. However, there has been an increase 
in research in this direction since 2017. 
 
In one of the earliest approaches of applying ontology for sustainability assessment, Giovannini et al. (2012) 
proposed a product centric ontology for supporting the design of sustainable products. Their ontology 
captures the relation between products and processes and identify processes that yields more sustainable 
products. Benabdellah et al. (2021) proposes a similar approach for instituting an ontology for designing green 
products. In their approach ontology is used for managing knowledge about various design techniques and 
their relations to strategies of organisations. However their approach employs an ad-hoc ontology developed 
for this specific use case. Echefaj et al. (2023) applied ontology for supplier selection in the circular economy, 
developing criteria for sustainable supplier selection with an ad-hoc ontology. Psarommatis et al. (2023) 
extended the IOF standard ontology for zero defect manufacturing, however did not focus on overall 
circularity or sustainability of manufacturing systems. 
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6.3 Problem Description 

The ACCURATE project envisions an agile manufacturing ecosystem, facilitated by the seamless integration of 
various entities from inside and outside of the factory. This implies that all stakeholders involved in the value 
chain, or the overall ecosystem are connected with seamless interoperability. To ensure trusted and secure 
communication and data exchange among partners within the manufacturing ecosystem, a Gaia-X based 
framework, as shown in Figure 20, is proposed. 
 

 
Figure 20: A simplified representation of the ACCURATE framework. 

An agile production environment allows for the dynamic discovery and contracting of raw material suppliers 
and MaaS providers globally. Therefore, an agile production environment can have potential raw material 
suppliers, potential MaaS providers, potential customers, other supply chain stakeholders, governmental 
agencies, etc. At the same time, we can assume that the production system itself has the flexibility and 
reconfiguration capability to capture varying requirements from customers and market fluctuations, including 
potential discrepancies. The introduction of a CE initiative within an agile production environment, hence, 
needs to consider all possible combinations of different machinery configurations, raw material suppliers, and 
MaaS providers. Additionally, their interdependencies need to be defined, and correlations need to be 
mapped. This has to be followed by a circularity and sustainability performance assessment. Therefore, the 
overall process can be seen as a complex problem for a human, making it challenging, time-consuming, and 
error prone. 
 
From a technical point of view, the problem can be seen as a decision-making problem that requires 
information from different stages such as design, development and operation stage of a manufacturing 
ecosystem. The decision making must consider information retrieved from various stakeholders, associated 
tools, production resources, supporting systems, operational information, economic information, etc., that 
take part in these stages. This leads to the requirement of having the technical characteristics as shown in 
Table 6 for the proposed DSS. 
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Table 6: Required characteristics of the proposed decision support system 

Label Requirement 

RQ1 Semantic interoperability among humans, tools and various systems 
RQ2 Ability to model information from various disciplines and their interaction 
RQ3 Ability to capture dynamic and evolving knowledge 
RQ4 Scalability 

 

6.4 Ontology as a Core Enabling Technology 

A systems engineering process consists of interconnected methods and models (Estefan, 2008; Kranabitl et 
al., 2024). A method is a well-defined procedure for achieving a specific objective and may include a sequence 
of steps and their procedures. Thus, a method defines “HOW” an objective can be achieved (Kranabitl et al., 
2024). A method takes one or more models as input and generates the required objective as output. 
Depending on the use case, the method will also incorporate associated models for supporting the generation 
of the required objective. Additionally, a method must be implemented in a tool. Choosing the right method 
is critical for the success of a project (Kranabitl et al., 2024). 
 
Inspired by the systems engineering process (Estefan, 2008; Kranabitl et al., 2024), we define our method to 
consist of two sequential steps, as shown in Figure 21. The first step is information integration and retrieval, 
and the second step is the derivation of optimised configuration. The methods have input models, as depicted 
on the left-hand side of the figure, and out-put models, as shown on the right-hand side. The associated model 
of a method is illustrated above the method, and the tool where we expect to implement the method is shown 
below the method. 

 

 
Figure 21: Proposed method for achieving circularity and sustainability in MaaS systems. 
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The first step is defined to address the problem of identifying right combinations of models from different 
stakeholders, along with their interdependencies and correlations. We propose using models and data from 
across the value chain as inputs to this method along with the targeted sustainability score. The expected 
output of this method is the matching configurations of participating entities for the targeted sustainability 
score (a reduced space). 
 
Identifying the combinations of different stakeholders and their involved models, along with their 
interrelations and correlations, can be seen as an information integration and retrieval problem. Ontologies 
have been found to be very efficient in addressing information integration and retrieval problems due to their 
axiomatic modelling capabilities (Kasie et al., 2017). Considering the main challenge of the first step of our 
methodology as an information integration and retrieval problem, we propose using an ontology driven 
knowledge graph as an associated model to our first step. By using a knowledge graph an associated model 
for our first step, we anticipate that the overall effort required to develop the proposed decision support 
system will be reduced. Additionally, the characteristics/features of the proposed DSS as shown in Table 6 
(RQ1, RQ2, RQ3, RQ4) can be completely satisfied by an ontology driven knowledge graph. 
The second step is envisioned to use the output of the first step (a reduced space of the possible 
combinations) as its input model for deriving an optimised ecosystem configuration for the given sustainability 
score. We propose to use a DT based simulation and optimisation for this step. A detailed elaboration of the 
second step is out of scope in this work and seen as an immediate future work. 

6.5 Agile Manufacturing Ecosystem Model using Ontology 

6.5.1 Industrial Ontology Foundry 

The next step to identifying an ontology driven knowledge graph as an associated model within the DSS, is to 
define the ontology model for the MaaS based agile manufacturing ecosystem. Although ontology concepts 
emerged in the 1980s, their application in manufacturing has been limited due to high development efforts 
(Hurtado & Nudler, 2012; Staab & Studer, 2013). ISO/IEC 21823-3 standard for semantic interoperability 
recommends reusing or referring or extending available ontologies instead of building an ontology from 
scratch (Sapel et al., 2024). However, many past approaches focused on creating ad hoc ontologies tailored to 
specific use cases, resulting in data silos applicable only to those specific scenarios (Kulvatunyou & Ameri, 
2019). 
 
Among the available, widely accepted ontologies within manufacturing domain include the initiatives such as 
Onto-STEP and Onto-PDM, AMLO (Kulvatunyou & Ameri, 2019; Sapel et al., 2024; Yang et al., 2023). Onto-
STEP converts the aspects of STEP standard into ontology (Sapel et al., 2024). OntoPDM converts product data 
management aspects into ontology (Sapel et al., 2024). AMLO converts the standard AutomationML and 
related aspects into an ontology (Sapel et al., 2024). However, these ontologies themselves are not 
standardised accordingly. 
 
The IOF (Ameri et al., 2022; Kulvatunyou & Ameri, 2019; Sapel et al., 2024) is an initiative by the OAGi6 for 
developing standard ontologies applicable for the manufacturing domain. IOF uses Basic Formal Ontology 
(BFO): an ISO/IEC PRF 21838-2.2 standard ontology applied in several domains as a neutral top level format, 
as the top-level format and provides IOF core as the core ontology. A matured version of IOF core ontology is 
now available for public download. Additionally, provisional versions of domain specific ontologies such as 
supply chain management and maintenance are also available for public download7. The IOF envisions that 
various parties can extend the IOF reference ontologies to accommodate required sub-domain or application 
ontologies (Kulvatunyou & Ameri, 2019). 

 
6 https://oagi.org/ 
7 https://spec.industrialontologies.org/iof/ontology 
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IOF core ontology covers production processes, resources, and measurement entities within a manufacturing 
company (Sapel et al., 2024). IOF SC management covers basic aspects needed for modelling the SC and 
associated entities of a manufacturing ecosystem. With these two ontologies, several basic competency 
questions that need to be answered in an agile manufacturing ecosystem have already been addressed by IOF 
ontologies (Kulvatunyou & Ameri, 2019). 
  
Considering the coverage, an active community that supports the development, availability of ontology as 
files (Sapel et al., 2024), we decide to develop our ontology with the IOF. Though, similar initiative such as 
Ontocommons (an initiative to compile information on existing ontologies in European Union) exist, IOF is 
found to be most stable initiative with growing community (Sapel et al., 2024). The idea is to maximum reuse 
and merge IOF ontologies in addressing our research objective and extend it wherever required. 

6.5.2 Proposed Ontology Model 

Our initial experiments with IOF show that, several aspects and entities required for achieving our research 
goal are available within IOF ontologies. These include Product, Processes, Resources models and the relations 
among them in the form of PPR model (Vathoopan et al., 2021). Various aspects of supply chain, such as 
different stakeholders (buyer, consignee, supplier, etc.), as well as logistics related, and geography related 
aspects are also available. 
 
From the perspective of the ACCURATE project, the manufacturing ecosystem itself is seen in an agile 
environment from a service-oriented perspective to integrate the concept of MaaS. As per ISO 59020 
(Standardization, 2024c), the aspects of circularity can be applied to any levels within or out of an 
organisation. Redefining the main goal of ACCURATE, we arrive at: identifying the configuration(s) that yield 
the required sustainability score, to define a manufacturing service as the basic entity to which the aspects of 
circularity can be applied. Hence, the first entity to be modelled within the ontology is a manufacturing 
service. 
 
There are several approaches describing the services within manufacturing domain (Cheng et al., 2017; 
Diedrich et al., 2022; Kulvatunyou & Ameri, 2019; Wu et al., 2015). Many studies use capability as a synonym 
to service, while other studies use skill as a synonym to service (Diedrich et al., 2022; Kulvatunyou & Ameri, 
2019; Vathoopan et al., 2021). According to Platform Industrie4.0 (Diedrich et al., 2022), a service within the 
domain of manufacturing specifies the capabilities offered by a service provider to a service requester with 
extended description of its commercial aspects. Additionally, they distinguish the differences between service, 
capability and skills. We adopt the definition of a service from Platform Industrie4.0. 
 
The main goal of MaaS is to implement manufacturing as as service in similar way to the concept of web 
services. From the web service domain, there was an effort to model a web service using the concept of 
ontology. This effort is known as OWL-S (Martin et al., 2004), and is available as a recommendation from W3C. 
The model of a web service as seen from OWL-S (Martin et al., 2004) is shown in Figure 22. 
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Figure 22: Mapping of the definition of MaaS from Platform Industrie4.0 to the web service model. 

According to OWL-S, a service is specified using a profile, that is used to publish the service within a registry. 
The service profile is discoverable by someone who requests to avail a specific service. Then, there is model 
of the service itself, that describes the service specification and its various other aspects. Finally, the service 
has a grounding model, that defines how a service is implemented, for example using a specific technology 
(Martin et al., 2004). Mapping the definition of service from Platform Industrie4.0 to the web service model, 
we see the model of a MaaS using IOF.  
 
The IOF ontology has three aspects that need to be understood for defining the model as shown in Figure 22: 
1) Capability, 2) Process and 3) Action specification (Kulvatunyou & Ameri, 2019; Kulvatunyou et al., 2022). A 
capability is a disposition (potential) that a material entity has, which an agent is interested in realising. The 
capability as defined in IOF standard is realised in a process at the organisation it holds. Action specification 
describes what a participant shall do in a process (Kulvatunyou et al., 2022). Relying on Diedrich et al. (2022), 
we define a MaaS as a capability of a manufacturing/business organisation or their internal resources that are 
offered as a service with extended description of its commercial aspects. The model of the capability as shown 
in IOF ontology however, is abstract and not capable to integrate the concept of model of a MaaS (Bouzary & 
Frank Chen, 2018; Cheng et al., 2017; Diedrich et al., 2022; Wu et al., 2015). 
 
After discussion with industrial partners in the ACCURATE project and analysing the approaches from 
literature, we rely on a registry/platform based approach for implementing the concept of MaaS. The service 
providers publish their MaaS within the registry and the service consumers can search for services using 
different requirements. On finding a match, a consumer can go for further processes such as price negotiation 
and contract fixing and the provider executes the service as per the contract. The first step in this approach is 
publishing a service within the service registry by the provider that are discoverable by a potential consumer. 
We consider simple services such as single machine hours, man hours, logistic service, etc. This type of service 
requirement can arise, for example when a machine at the company undergoes unplanned maintenance or 
to meet a customer requirement that cannot be fulfilled with existing machinery or available manpower. The 
customer requirements may include service specifications, quantity and time requirements, etc. Further the 
customer may also specify preferences such as geographical location, minimum time frame, and sustainability 
criteria. 
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In collaboration with our industrial partners, we defined the following competency questions to develop a 
MaaS model using the IOF ontology: 
 

1. Who provides service X? 
2. What is the time period during which the service available? 
3. What are the available parameter range of the service provided? 
4. What are the quality attributes of the provided service? 
5. What is the quantity capability proposed by the service provider? 
6. Is there any preconditions that need to be satisfied for availing the service? 
7. What are the inputs required for availing the service? 
8. What are the outputs of the service? 
9. What is the geographic location of the provider? 
10. What are standards assured by the provider? 
11. What is the minimum time frame assured by the provider? 

 
For answering the aforementioned competency questions, the model of capability in IOF is extended to form 
our proposed MaaS model as shown in Figure 23. To model the specification and attributes of a service, we 
propose to include the following additional entities:  
 

• ServiceID: related to the MaaS model with a hasServiceID object attribute. The serviceID can refer to 
service classification standards such as VDI 2860, DIN 8593, etc., for unambiguous matching 
(Kulvatunyou & Ameri, 2019; Vathoopan et al., 2021) along with the basic description of the service. 

• Preconditions: related to the MaaS model via hasPrecondition object property, Preconditions are 
proposed to include any conditions that have to be met for availing the service such as minimum 
quantity required. 

• Input: related to the MaaS via hasInput object property. Input entity describes the input/s required 
for availing a service such as raw materials, drawings, etc and their specifications. 

• Output: related to the MaaS via hasOutput object property. Output entity provides details of the 
output/s obtained as a result of executing the service and their specifications such as quantity and 
quality. 

• Parameters: related to the MaaS via hasParameter object property. Parameters can be used to define 
the parameters of an availed service. 

• Attributes: related to the MaaS via hasAttributes object property. Attributes can describe the quality 
attributes of a MaaS. To describe the time frame of the offered service we propose to include 
AvailabilityInfo entity. This entity can be related to the MaaS model via hasAvailabilityInfo object 
property. Availability information is provided to include details on when exactly the service is available 
for consumption.  

• RealtimeInfo: related to the MaaS via hasRealtimeInfo object property. RealtimeInfo entity provides 
real time information on the execution of a realised process. 
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Figure 23: Proposed MaaS model in ACCURATE. 

A published manufacturing service can adopt a more intricate format to encompass the entire production of 
a product or a specific product module. This type of a service request might include other details such as 
product details and associated requirements. This type of service definition is out of scope of this chapter. In 
IOF, a capability of published service is realised in a process. Hence, entities of the proposed MaaS model have 
to be mapped into the process model as well. The process model can include other details such as composition 
information. Further extensions, in this direction is seen as a future work. 

6.6 Evaluation and Preliminary Results 

To evaluate the proposed models, we take the use-case of a sample company producing Printed Circuit Board 
(PCB). The PCB manufacturing involves several processes such as Surface Mount Technology (SMT) Top, SMT 
Bottom, Automatic Visual Inspection, Depanelling, Automatic inline testing, functional testing, etc. Among 
these processes, Depanelling is used to separate the PCBs into modules or separate products based on the 
requirements. It is performed using several techniques such as Laser based cutting, manual cutting, etc. 
Assuming an unplanned maintenance of an in-house machine, the company needs to avail depanelling service 
from the MaaS providers. 
 
A company’s search criteria for a required service can be formatted as follows: 
 

Requirement: PCB depanelling service (Curf width: 20µm, Quantity: 3000, Time frame: 4-20 days from 
1 Nov 2024) 
 
Preferences: <500Km from Tolouse France, 10 days delivery, CO2_intensity < 10 kg/m, scrapRate < 5%. 

 
The offered service from a provider may take the form as shown in Figure 23 in this case. For implementing 
the matching of requested service and provided service, several approaches exist in literature (Bouzary & 
Frank Chen, 2018; Cheng et al., 2017; Zhang et al., 2020). Implementing a matching algorithm is out of scope 
of this research. 
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Figure 24: A sample MaaS published in the service registry. 

We used Protégé editor (Yang et al., 2023) for developing our ontology. We modelled three sample MaaS with 
different specifications based on the model shown in Figure 24. SPARQL based query was formulated to model 
the requirements and preferences of the sample company. The query resulted the matching MaaS from the 
three available options. 

6.7 Discussion and Conclusion 

This chapter discusses the use of ontology-driven knowledge graphs to achieve sustainability in an agile 
production environment with networked MaaS. By setting a target sustainability score from the outset, the 
goal is to optimise the configuration of suppliers, production resources, and MaaS. This research proposes a 
two-step method to achieve this goal. The first step, constructing an ontology for information integration and 
retrieval, is elaborated upon. 
 
As an initial contribution, after reviewing extensive literature and ontology selection criteria (Kulvatunyou & 
Ameri, 2019; Kulvatunyou et al., 2022; Sapel et al., 2024; Yang et al., 2023), this research identifies IOF as the 
preferred ontology for developing an agile manufacturing ecosystem. Anticipating the future adoption of 
MaaS similar to web services, this study proposes a MaaS model inspired by web services (Martin et al., 2004). 
It maps the state-of-the-art definitions and models of MaaS within the manufacturing domain (Cheng et al., 
2017; Diedrich et al., 2022; Vathoopan et al., 2021; Wu et al., 2015). Extended entities required for modelling 
the proposed MaaS within IOF are introduced based on derived competency questions. The proposed model 
is evaluated using an example of a company searching for a specific service in the proposed service registry. 
Our initial experiments support the claim, as shown in (Kulvatunyou & Ameri, 2019; Kulvatunyou et al., 2022; 
Sapel et al., 2024), that most aspects of an agile manufacturing ecosystem can be modelled by reusing the 
IOF Core and Supply Chain ontologies. Further extensions required based on our MaaS model, such as 
composable services, are considered future work. The development of a MaaS taxonomy applicable to our 
use cases is identified as an immediate future task. Additionally, the development of the second step, which 
involves using DTs to optimise a sustainable manufacturing ecosystem, is also seen as future work. 
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7 Circularity, Sustainability, and Resilience Indicator Framework for a MaaS 
System 

7.1 Data Collection for Circularity, Sustainability, and Resilience Assessment 

To understand the feasibility of collecting primary data for performing circularity and sustainability 

assessment for MaaS providers, a two-step data collection process was setup for the pilots. The proposed 

methodology for circularity and sustainability assessment was explained to the pilot partners in ACCURATE, 

to give them an overview of the need and significance of various data to be collected from the production 

lines. 

1. The first data collection instrument was a detailed Excel template that asked the pilot partners to: (i) 
assess the feasibility of data collection, and (ii) report data points on a representative production line. 
This template will be presented in further details in the paragraphs below.  
 

2. The second data collection instrument refers to follow-up discussions conducted with the ACCURATE 
pilot partners to further understand existing challenges in data collection, and possibilities for 
addressing data gaps through the course of the ACCURATE project.  These discussions are also 
presented in further details in the paragraphs below. 
 

7.1.1 Data collection template distributed to ACCURATE pilot partners 

In addition to the production line information for developing the production DES models, we distributed a 

data collection template to collect information required for computing circularity and sustainability indicators, 

linked to the developed simulation models. The pilot partners were asked to collect these data points for a 

representative production line (for which the simulation models will be constructed) and to report (i) 

historical data availability, as well as (ii) feasibility for collecting these data from the production line, e.g., 

using existing data collection systems or by implementing additional systems. Table 7presents the data types 

requested from the ACCRURATE pilot partners, along with a brief explanation of the data type and the 

purpose of data collection.  

 

Table 7: Data collection template distributed to ACCURATE pilot partners for estimating the feasibility of 
computing circularity, sustainability and resilience indicators. 

# Category Data Type Brief Explanation Purpose of data collection 

01 Product Component Mass 
(kg) 

Mass of individual components for 
representative products produced in 
the production line based on the Bill 
of Materials. 

Computing environment intensity of 
production process and mass-based 
CE indicators. 

02 Product Component 
Material 

Composition 

Material composition for individual 
components for representative 
products produced in the production 
line based on the Bill of Materials. 

Identifying environmental impacts 
from material extraction and end-of-
life stages. Computing production 
environmental impacts based on 
material type.  

03 Product Component Scrap 
Rate (%) 

Average rate of scrapped 
components sent for disposal. 

Computing additional 
environmental impacts due for 
meeting a specific order quantity. 

04 Product Component 
Rework Rate (%) 

Average rate of components sent for 
rework. 

Computing additional 
environmental impacts due for 
meeting a specific order quantity. 
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05 Process Average 
workstation 

utilisation rate (%) 

Percentage of total production time 
that a workstation is active/in use. 

Estimating process flexibilities 
needed for replanning production 
under disruptions.   

06 Process Workstation 
planned 

maintenance 
(hours) 

Annual hours of planned 
maintenance for a individual 
workstations on the product line. 

Estimating process flexibilities 
needed for replanning production 
under disruptions.   

07 Process Workstation 
unplanned 
shutdowns 

(hours) 

Annual hours of unplanned 
shutdowns for a individual 
workstations on the product line. 

Estimating process flexibilities 
needed for replanning production 
under disruptions.   

08 Process Workstation 
operator breaks 

(timestamp) 

Duration of operator breaks planned 
on specific workstation. 

Estimating process flexibilities 
needed for replanning production 
under disruptions.   

09 Process Workstation 
changeover time 

(hours) 

In the case where multiple 
components can be produced in a 
single workstation, the time for 
configuring it for a new product.  

Estimating process flexibilities 
needed for replanning production 
under disruptions.   

10 Process Workstation 
energy use (kwh) 

Annual energy consumption of each 
workstation on a production line.  

Computing environmental impacts 
due to energy usage. 

11 Process Workstation 
consumables (qty) 

List specifying type and annual 
amount of consumables for each 
workstation. 

Computing environmental impact 
due to material usage. 

12 Process Workstation 
emissions (qty) 

List specifying type and annual 
amount of emissions resulting from 
each workstation. 

Computing environmental impact 
from emissions to air, water, and 
land. 

13 Human Social impact 
considerations 

Prioritisation of social impact 
categories relevant to the 
production system.  

Estimating focal areas for social 
impact assessment for MaaS 
providers. 

14 Human Training and 
upskilling 

Need for upskilling and training 
workers on specific processes on on 
the production line. 

Estimating social impacts from 
changes to production and 
opportunities for improving well-
being.   

 

It should be noted that the data presented in Table 7 should not be considered as comprehensive data inputs 

for estimating for assessing the resilience, circularity, and sustainability of the MaaS provider. They represent 

complementary data collected, over those required for developing the DES based simulation models in WP 3 

and WP 4. Furthermore, this data collection instrument served as an exploratory mechanism for opening up 

a conversation with pilot partners on data availability and gaps. Consequently, we did not specify rigorous 

data quality criteria and specifications at this stage. Finally, actual data provided by the partners is not detailed 

in this report due to confidentiality reasons. 

7.1.2 Follow up discussions with ACCURATE pilot partners 

The ACCURATE pilot partners were invited for follow-up discussions through the WP 3 meetings, as well as 

scheduled one-on-one meetings to better understand existing challenges with data collection and resolving 

data gaps. The overall goal was to reach a collective agreement on what data points could be modelled as 

primary data (i.e., directly collected from the production lines) and the data points that needed to be 

modelled from secondary sources including, commercial LCI databases, and peer-reviewed articles. 

Furthermore, the prioritisation of the computing specific indicators was discussed based on the realised data 

collection constraints. 
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7.1.3 Results 

Results provided by the partners we analysed to understand the availability and level of aggregation of 

these data as shown below. It should be noted that the results shown represent the as-is situation across 

the ACCURATE pilot partners. Future work will recommend specific implementation solutions for data 

collection, based on the indicators selected for each UC.  

Table 8: Overview of data availability and data collection changes for the individual data types. 

# Data Type Summary 

01 Component Mass 
(kg) 

The mass of individual components was available in various technical sheets and 
engineering documentation. Given the complexity of collating these data, the only solution 
would be to make direct measurements on the production line and establish an aggressive 
mass-based cut-off criteria to limit the number of direct measurements to be made. It 
should be noted that the focus of the ACCURATE project is on the manufacturing processes, 
and not on the produced products themselves; estimating a PEF for a product is outside 
the project scope. Therefore, mass measurements are further restricted/aggregated to 
those required for estimating mass-intensity based indicators (e.g., ratio of total energy 
consumed in a manufacturing process to total mass flow). 

02 Component 
Material 
Composition 

Component material composition was only available in various technical sheets and 
material specification data sheets. Given the complexity of collating these data, and the 
focus of ACCURATE, the use of data is only relevant for identifying the characteristic of mass 
flow data (e.g., determining if a mass flow is e-waste, metal scrap, etc.). 

03 Component Scrap 
Rate (%) 

In cases where the product is electro-mechanical or electrical,  the number of components 
was high, and several components were sourced from suppliers. Therefore, it was not 
possible to estimate the scrap rate for individual components. Given that production lines 
were multi-step processes, component scrap could be generated at different stages and in 
different workstations. This complexity was exacerbated when multiple products were 
produced (high-mix production) on a specific line. Consequently, such estimations would 
have to typically rely on averaged data at a product level. 

04 Component 
Rework Rate (%) 

Availability of detailed rework data was varied. In cases where the product is electro-
mechanical or electrical, the number of components was high, and several components 
were sourced from suppliers. Therefore, while it was possible to estimate a rate for the 
overall product, component-level data was unavailable. In some instances, reworking was 
strictly limited or prohibited due to safety implications. Consequently, the computation of 
sustainability and circularity indicators should consider challenges in estimating these data.   

05 Average 
workstation 
utilisation rate (%) 

Utilisation rate data for specific machines or workstations was typically monitored 
periodically in terms of Overall Equipment Effectiveness (OEE). However, considering the 
number of workstations/machines involved, it was noted that collating such data would 
require significant effort. Consequently, the computation of sustainability and circularity 
indicators should consider challenges in estimating these data. 

06 Workstation 
planned 
maintenance 
(hours) 

Planned maintenance data for specific machines or workstations was typically documented 
in maintenance logs. However, considering the number of workstations/machines 
involved, it was noted that collating such data would require significant time and effort. 
Consequently, the computation of resilience indicators (e.g., in relation to reconfiguration) 
should estimate these data from secondary data sources or heuristic data. 

07 Workstation 
unplanned 
shutdowns 
(hours) 

Pilot partners reported that it was challenging to accurately quantify the probabilities or 
average mean time to failure at an individual workstation level. Resilience indicators 
related to production line reliability (e.g., time to failure, time to repair) would therefore 
have to rely on expert estimates. Furthermore, it was pointed out that in general, the 
operations analysed in the scope of the ACCURATE project were highly mature and 
unplanned failure is not a major bottleneck. Non-operation of machines due to other 
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factors e.g., insufficient work-in-progress was seen as a more important consideration in 
terms of overall resilience.   

08 Workstation 
operator breaks 
(timestamp) 

Operator breaks that are scheduled are well known. The relevance of the breaks to the 
operation of a workstation varied significantly as some processes could operate without 
continuous monitoring. This variance should therefore be considered while estimating 
sustainability performance (i.e., if a machine is in idle state during a break) and resilience 
performance (e.g.,, time to detect failures, time to reconfigure the production line, etc.) 

09 Workstation 
changeover time 
(hours) 

The ability to estimate changeover times was a function of process complexity as well as 
flexibility. For example, in a highly flexible process such as automated printer circuit board 
assembly, that can produce multiple variants over a shift, it was challenging to estimate 
changeovers. In the other extreme, where a production line was dedicated towards 
producing a single product, they were non-existent. In other instances, e.g., where the 
entire line needs to be reconfigured for producing a different product, changeover times 
were unknown. Therefore, these data, if required for computing performance indicators, 
would require expert-based and/or heuristics-based values.  

10 Workstation 
energy use (kwh) 

Energy consumption data was typically collected for sustainability reporting. These data 
were typically available at the level of the entire factory/plant and in some specific 
instances at the level of individual lines. Challenges including proprietary hardware 
interfaces, cost of data collection, and uncertainty in data usefulness limit data collection 
on individual workstations or machines. Consequently, sustainability and circularity 
indicators requiring energy use data at the machine level would require inputs from 
secondary data sources (e.g., commercial LCI databases) and/or additional primary 
measurements. 

11 Workstation 
consumables 
(qty) 

Data on consumables (e.g., tools, lubricants, water) could be potentially assessed through 
purchasing records. However, given the consumables were shared across multiple lines and 
workstations, it was challenging to attribute a specific quantity of usage to a workstation 
without additional measurements. Consequently, sustainability and circularity indicators 
requiring these data would require inputs from secondary data sources (e.g., commercial 
LCI databases) and/or additional primary measurements. 

12 Workstation 
emissions (qty) 

Process emissions were typically solid wastes (e.g., unusable scrap) and liquids (e.g., spent 
fluids) that were sent for downstream processing. Aggregated data was available in some 
instances. Attributing a specific quantity of usage to a workstation will require significant 
additional effort. Consequently, sustainability and circularity indicators requiring these 
data would require inputs from secondary data sources (e.g., commercial LCI databases) 
and/or additional primary measurements. 

13 Social impact 
considerations 

A significant focus for MaaS providers was on ensuring a well-functioning and beneficial 
relationships with their value chains. The well-being of workers was also pointed out as 
important. Worker protection was seen as not relevant to the partners, due to the presence 
of strong worker protection regulations in their operations regions and high voluntary 
standards. Efforts for data sharing on social impacts are at an early stage and not fully 
implemented. It should be noted that given the scope of the ACCURATE project, such 
considerations are not expected to be dynamically linked to DT models; future efforts will 
investigate if relevant social impacts can be continually monitored.  

14 Training and 
upskilling 

All pilot partners reported having a mix of automated and manual processes, with the 
manual processes typically requiring specialised skills and extended training.  Therefore, 
training and upskilling are seen as vital to the resilience of the business. Lack of sufficient 
local labour force and the extended time for training were viewed as challenges. Future 
efforts should investigate if it is possible to evaluate the effect of disruptions (and the 
consequent actions taken by a partner) on worker training and upskilling. 

 

Based on the above results, the following recommendations are drawn for the integration of resilience, 

sustainability, and circularity indicators with the DES models that will be developed for the various use cases. 

• CE indicators selected for assessing the pilot cases should largely be process focused and utilise 
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aggregated material and energy flow information where possible. It will be challenging to develop 
and integrate indicators at a high level of granularity (e.g., at an individual workstation or component 
level) due to existing data availability and the significant costs of added data collection. 
 

• Limited primary inventory data is available to compute environmental sustainability indicators. 
Consequently, there is a need to rely on secondary data sources, including commercial databases and 
peer-reviewed articles. Sufficient care should be taken to select representative process models, which 
require further discussions with the pilot partners. The models should be developed in a modular 
manner (i.e., when considering the integration of production simulation models and sustainability 
assessment models) to ensure secondary data can be substituted with primary data in the future, 
improving the accuracy of the overall assessment. 

 

• Coupling of social sustainability indicators with the DES models, is only possible for indicator 
categories where a proxy can be established using direct measurement on the production line (e.g., 
OTD). Worker-specific indicators are to be progressively monitored, but it is potentially challenging to 
couple them with the DES models due to the lack of data and knowledge to establish causal 
relationships. 

 

• At the production level, computation of resilience indicators needs to rely on average estimates for 
factors such as equipment availability, reliability, and reconfigurability. While such estimates can be 
readily integrated with simulation models, follow-up dialogues with the pilot partners should ensure 
that these results are representative of observed historical behaviour, relying on their domain 
expertise. 

7.2 Circularity and Sustainability Indicators Workflow 

To assess the circularity and sustainability in the MaaS system, a combination of indicators from the ISO 59020 

standard and sustainability LCA methods will be applied. Additionally, the difference between UCs focusing 

on supply chain dynamics and UCs looking at production necessitates the assessment of different indicators 

between the two cases. The indicators were chosen based on the following criteria: together, the indicators 

can span a range of data types and aspects of sustainability and circularity, and there is reasonable belief that 

we will be able to obtain the data necessary to calculate these indicators from the simulation, the partners, 

or a database. 

7.3 Circularity and Sustainability Indicators on the Supply Chain Level 

The primary indicator recommended for sustainability on a SC level is emissions associated with 

transportation of materials. These emissions can be found with the knowledge of the travel path for materials, 

the vehicle carrying the materials, and the material weight. LCA databases, such as the ecoinvent database8 

contain information on the emissions associated with different vehicles and using the weight and distance 

travelled, emissions can be extrapolated from this. This indicator was chosen because it is a relatively simple 

sustainability indicator, and it can capture the environmental impacts of the transportation of materials under 

disruptions. For instance, if a critical supplier is disrupted and the company has to find an alternative source, 

the alternative source may have higher emissions if they use different means of travel or if products are 

shipped from further away. While a deeper analysis into the different materials being sourced can unveil more 

 
8 http://ecoinvent.org/database/ 
 

http://ecoinvent.org/database/
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about the true sustainability of the SC, this is a task that is too complicated for the pilot partners, and to be 

undertaken as a part of the ACCURATE project. 

A key aspect in CE is the circularity of materials, thus it is critical to look at circularity indicators as well as 

general sustainability indicators. Two circularity indicators were chosen to be recommended from the 

ACCURATE Circularity Indicator Screening Tool, to be used for SC simulations. These indicators were adapted 

in order to make them specially tailored to being applied on a supply chain level. The first indicator is the SC 

waste factor. Waste factor is an indicator that divides the waste generated during the production of a product 

by the total weight of the product, in this way, showing a proportion of waste produced to product produced 

(Jerome et al., 2022). The next circularity indicator is taken from the current ISO standards, percent recycled, 

reused, or green materials used in production. This indicator is as it seems, a proportion of recycled, reused, 

or green materials against the total mass of materials used (Standardization, 2024c).  To adopt this indicator 

to work within a SC context, instead of materials used in production, it will look at percent of materials 

delivered to customers that are recycled, reused, or green. 

7.4 Circularity and Sustainability Indicators on the Production Level 

On a production level the recommended indicators measure impacts due to energy usage. Data on energy 

demand and the sources of energy are relatively easy to find for a singular manufacturing facility. To measure 

the sustainability of energy usage, WP 3 and WP 7 will look at two metrics: average percentage of renewable 

energy and energy intensity. The average percentage of renewable energy is a measurement of the 

proportion of energy used that comes from a renewable source. This metric is a supplemental measure from 

the ISO 59020 standard, meant to complement measures of material circularity (Standardization, 2024c). The 

other metric, energy intensity, is the total energy demand for a given period of time, divided by the total mass 

of products produced. This can be seen as generally showing the energy efficiency in the production of goods 

(Jerome et al., 2022).  

To compliment the aforementioned sustainability indicators, four circularity indicators are recommended. 

These indicators cover material circularity and water circularity. In the ISO 59020 standard, aspects of 

circularity are split into five categories, resource inflows, resource outflows, energy, water, and economics 

(Standardization, 2024c). The sustainability indicators chosen for production, percentage of renewable energy 

and energy intensity, cover the energy category.  

Resource outflow circularity is addressed using the indicator waste factor. Waste factor is the total waste 

produced during production divided by the total mass of product produced (Jerome et al., 2022). Shrinking 

the waste factor results in less waste produced during the production process. This can be reduced in many 

different ways whether by changing the product design, the production process, or by diverting material from 

being waste by reusing it. To cover the resource inflow, the metric of average recycled content from the ISO 

59020 standard is recommended. Average recycled content is one of the mandatory indicators mentioned in 

the ISO standard on measuring and assessing circularity performance. It is the fraction of mass of a product 

that is produced with recycled material (Standardization, 2024c).  

The final category that is within the scope of the ACCURATE project is water circularity. This will be covered 

using two metrics, percent water withdrawal from circular sources and percent water discharged in 

accordance with quality requirements. Water is an often-overlooked aspect of CE. Water withdrawn from a 

circular source is water that has either already been used once, so it is not considered to be virgin water, or 

it comes from a natural source that is renewable. Water discharged in accordance with quality requirements 

means that it leaves the facility and goes to either another facility to be reused or it is in a state that it can be 

returned directly to the environment without negative environmental impacts. This is where water is cycled 
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back into the circular system, either through reuse in a different context, or by renewing the natural water 

cycle (Standardization, 2024c). 

7.5 Resilience Indicators in Production Optimisation 

The resilience indicators chosen to be integrated in the simulations were mainly based off of a performance 

curve, where a chosen performance of a system (i.e., OTD, material delivered, product produced) is plotted 

against time with a disruption occurring during the simulation. It is not yet decided exactly how system 

performance is measured for the specific UCs as further information on the DES models is needed.  

Similar to circularity and sustainability indicators, resilience indicators were chosen based on, whether a 

simulation dealt with the SC or the production process, since different aspects of resilience are more 

applicable to one or the other. However, the majority of these indicators were chosen to be used with both 

the SC simulations and the production level simulations. 

 

Figure 25: (a) Recovery Time and (b) Robustness adapted from Wang et al. (2022) 

Figure 25 shows two performance curves with different aspects highlighted, these different aspects are used 

to calculate the three resilience indicators chosen to assess all user scenarios, these being recovery time, 

robustness, and capacity loss. Recovery time, indicated by Figure 25(a), is calculated as the time between the 

worst performance of a system and the time at which the system reaches a new steady state (Wang et al., 

2022). This indicator quantifies how long it takes for a system to recover after a disturbance. The next 

resilience indicator chosen to be calculated in all scenarios is robustness. While robustness can be defined in 

many ways, in the scope of this work, it is defined as worst performance of a system under disruption (Wang 

et al., 2022) as also shown in Figure 25(b). The difference between robustness and reliability is that robustness 

assesses the resilience of a system under a large and unexpected disruption, while reliability focuses on a 

system withstanding smaller but more common disruptions (Uday & Marais, 2015). By measuring the greatest 

impact an event has on the overall system performance, this definition of robustness is sufficient to assess 

the ability of a system to withstand large, unexpected events.  
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Figure 26 Capacity Loss on a Performance Curve adapted from Wang et al. (2022) 

The final resilience indicator chosen for all cases is the capacity loss. As shown in as shown in Figure 26, 

capacity loss is the difference between the performance of the system pre-disruption and the performance 

of the system after it has reached a steady state after recovering. In Figure 26, there is no change in the 

capacity of the system, however, in other cases a full recovery is not possible, and a new system has a lower 

capacity that the old one. This difference would be the loss in capacity.  

7.6 Resilience Indicators on the Supply Chain Level 

On an SC level, the recommended resilience indicator is time to failure. Time to failure is illustrated in Figure 

27, and is the difference between the time that a disruption occurred and the time that system performance 

begins to fail (Wang et al., 2022). 

 

Figure 27: Time to Failure adapted from Wang et al. (2022).  

Time to failure is important in assessing the SC focused aspects in ACCURATE as the pilots represent SC which 

are complex and the impacts of disruptions downstream of production are unknown. Thus, the time that it 

takes for a disruption to affect system performance will provide helpful insights into the true impacts of a 

disruption and the amount of time that a reconfiguration could take place. 
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7.7 Resilience Indicators on the Production Level 

On a production level, the focus of the disruption models and DTs are focused on the product made and how 

disruptions in the process affect the ability of a company to deliver on time. Because of this, two additional 

resilience indicators were chosen to be applied to production related simulations. These indicators are loss of 

performance and rapidity in the recovery phase, shown in Figure 28(a) and Figure 28(b) respectively. 

 

Figure 28: (a) Loss of Performance, and (b) Rapidity in the Recovery Phase, adapted from Wang et al. (2022) 

Loss of performance is the total amount of lost production during the disruption period, calculated by the 

integral of the baseline performance minus the disrupted performance over the period of time from the 

beginning of performance declines to the recovery of performance to a steady state (Wang et al., 2022). This 

metric is important for assessing resilience on a production level, because it quantifies the total amount of 

production lost due to a disruption. 

The other metric which was chosen to assess production level resilience was rapidity in the recovery phase. 

Rapidity in the recovery phase is the rate of increase in performance from the point of the worst performance 

to the time that a steady state is reached. It illuminates how rapid a system can recover and thus can show 

more dimension, combining aspects of robustness, defined as the worst performance level reached, and time 

to recovery (Wang et al., 2022). This metric was chosen after closely reading through the UCs for the three 

pilot partners in ACCURATE. These UCs were developed as a part of WP 7 during the ACCURATE project. In 

each UCs involving production, pilot partners stated that a rapid recovery was an important aspect to quantify. 

7.8 MaaS system Use Case Workflows 

In the ACCURATE project, nine distinct UCs were created as a part of WP 7. Four UCs correspond to the partner 

Airbus Atlantic, two to Continental, and three to Tronico. Each UC investigates important aspects of SC and 

production resilience based on real-world needs from the pilot partners. These UCs can be categorized into 

one of three categories, depending on if they pertain to the,  (i) SC of a company, (ii) the production of  

company’s products, or  (iii) both. Given these three categories, appropriate circularity, sustainability, and 

resilience metrics are assigned to each UC category. After assigning these circularity, sustainability, and 

resilience metrics to the scenarios, we assessed them to see if additional metrics would be necessary in order 

to meet the desired outcomes for each UC (in addition to those described earlier at the SC and production 

levels). Out of the nine UCs, we found that six of them should have extra indicators applied to them. The 

following sections lay out the additional indicators to be used for each UC in addition to the circularity, 

sustainability, and resilience indicators listed in the previous sections of this chapter. 
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7.8.1 Airbus Atlantic User Scenarios 

Two out of the four UCs generated for Airbus Atlantic (UC 2, UC 3) required additional indicators to assess key 

aspects of the disruption scenario and the production and supply chain.  

UC 2 for Airbus Atlantic is titled “SC Design and Support by Identification of Hidden Critical 

Suppliers/Materials”. This UC involves stress testing the SC to uncover hidden critical suppliers or materials. 

Along with the identified SC resilience metrics (see Section 7.6), we recommend two additional related 

resilience indicators, number of critical nodes and proportion of critical nodes in a system. For these metrics, 

network analysis is utilised, where a SC is modelled in graph form, with nodes being firms or suppliers, and 

edges connecting these nodes represent trade agreements and the flow of materials (Demirel, 2022). In UC 

2, a critical supplier is one who’s failure would result in significant impacts to the functioning of the SC. Since 

this user scenario uncovers previously unknown critical nodes, it is necessary to know how many of them 

exist and what proportion of Airbus Atlantic’s SC is made up of them. An SC with a high number and 

proportion of critical nodes is more at risk of losing performance if one of these critical nodes are disrupted.  

The other Airbus Atlantic UC that required additional indicators was UC 3, “SC Design Recommendations for 

Better Absorption and Swift Adaptation”. This UC concerns Airbus Atlantic’s ability to adapt to disruptions in 

the SC by inventory management, supplier management, and the use of DTs. A KPI of this UC is a reduction 

in development lead time. In choosing additional indicators for this case, the key was to look at the ability of 

Airbus Atlantic to adapt and recover.  

 

Figure 29 (a) Recoverability and (b) Disruption Time adapted from Wang et al. (2022). 

Figure 29 depicts the two chosen additional metrics for UC 3, recoverability and disruption time. 

Recoverability is a resilience indicator which shows the ability of the system to recover from a disruption by 

comparing the difference between system performance before and after a disruption and the worst 

performance of the system. A recoverability of 1.0 indicates that a system can completely recover from a 

disruptive event and recoverability < 1.0 indicates that a system cannot meet pre-disruption performance. 

Metrics like recoverability and recovery time shed light on the recovery process a system undergoes, however, 

this UC is also concerned with the ability of the system to absorb a disruption. Part of this is handled by the 

robustness metric mentioned previously, however it is also important to know how long it takes the system 

to begin its recovery. This is where the next metric, disruption time, comes into play. Disruption time is the 

length of time between the beginning of system decline following a disturbance and the time when the 

system begins to recover, as shown in Figure 29(b). 
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7.8.2 Continental User Scenarios 

Continental’s second UC “Production Panning Reconfiguration Under Disruption”, aims to simulate their 

production lines under disruption. A key characteristic of Continental’s production line mentioned in the UC 

is that the machinery they use have a high utilisation rate and are often used round the clock. For this reason, 

three extra resilience metrics are suggested that can reveal particularly vulnerable steps in the production 

process. These three metrics are mean time to failure (MTTF), mean time between failures (MTBF) and mean 

time to repair (MTTR). These metrics are commonly used in evaluating manufacturing (Alavian et al., 2019; 

Daniewski et al., 2018).  

MTTF is the average life span of a machine before it breaks down. This is important information to use when 

scheduling maintenance. Additionally, this time can change depending on the use of a machine, for instance, 

running a machine for longer increments of time or at higher volumes can put it at risk for failing sooner. 

MTBF refers to the average time a machine can be used before experiencing a failure, this can be seen as an 

assessment of the reliability of a machine. Finally, MTTR refers to the average amount of time that it takes to 

repair a machine (Alavian et al., 2019; Daniewski et al., 2018).  

7.8.3 Tronico User Scenarios 

Out of the three UCs for Tronico, additional indicators are suggested for each UC to better encompass their 

goals. In Tronico’s first UC, “SC Optimisation for Inventory Replenishment Management”, the main issue is 

choosing the correct time and amount to replenish parts in their inventory. Problems which arise in 

replenishing stock is the unavailability of components, but on the other side, the obsolescence of components 

which have stayed too long in Tronico’s inventory, whether through a component becoming unusable, the 

product becoming discontinued, or a perishable item expiring. This represents a real sustainability issue, 

which is why a metric termed expiration waste is recommended. Plainly put, this is a measurement of the 

total mass of waste created from components and parts becoming obsolete and unusable while held in stock. 

Being able to minimise this will not only have positive economic benefits, but positive environmental benefits 

as well. 

The second UC for Tronico is “Production Scheduling Optimisation and Shop Floor Control”. Since Tronico 

makes a variety of electronic components for different machines, they require flexibility and reconfigurability 

in their production. Because of the inherent flexibility needed to accommodate a variable production, three 

metrics are recommended that provide insight on the ability of a manufacturing system to reconfigure its 

manufacturing. The first metric is reconfiguration time; this is the time that it takes a production line to 

transition from making product ‘1’ to product ‘2’. A short reconfiguration time indicates that a system can 

quickly adjust to the disruption of producing a new product. The second metric is the minimum increment of 

conversion. The minimum increment of conversion is the minimum number of machines that need to be 

stopped in order to change from producing product ‘1’ to producing product ‘2’. The final metric is called 

configuration convertibility. This metric combines the minimum increment of conversion, the number of 

redundant machines and the layout of the manufacturing floor (parallel vs series configurations) in order to 

assess how easily it could reconfigure itself to accommodate a disruption, either the production of a new 

product, the breakdown of a machine, or other likely occurrences. Configuration convertibility is normalised 

for the number of machines on a scale from 1.0 to 10.0, 1.0 being the least able to reconfigure and 10.0 being 

the most flexible (Hassan et al., 2024; Maler-Speredelozzi et al., 2003). 

The final Tronico UC is “Production Planning: Batch Optimisation”. This UC seeks to choose an optimal batch 

size for the production of orders that Tronico has to fulfil. Currently batch sizing is manually chosen based on 

previous experience. These simulations will help Tronico standardise batch sizing, avoiding decreases in 

resource utilisation, production performance, and resilience. Currently, poorly sized batches can lead to 
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machinery being underused or inefficiently used. In order to further investigate this, we recommend looking 

at the indicator mean machine utilisation. This is the time of machine use over the total time of production, 

showing how often a machine is utilised. 

7.8.4 Workflow Conclusion 

In conclusion, Section 7.8 recommends the use of the previous indicators in tandem with the models 

mentioned in Chapter 2. The following table (Table 9) outlines how the models and data collection table can 

be used to obtain these indicators. It should be noted that the usage of the recommended indicators relies 

on the ability of ACCURATE pilot partners to obtain the necessary data. 

 

Table 9: Applicability of Resilience, Sustainability, and Circularity Indicators to the ACCURATE pilot partners and 
and Corresponding Data Requirements. 

Indicator 
Type 

Indicator Name Indicator Requirements 
Airbus 

Atlantic 
Tronico Continental 

Resilience 
Indicators 

Recovery Time 
Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔ ✔ ✔ 

Robustness 
Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔ ✔ ✔ 

Capacity Loss 
Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔ ✔ ✔ 

Time to Failure 
Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔ ✔ ✔ 

Loss in 
Performance 

Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔ ✔ ✔ 

Rapidity in the 
Recovery Phase 

Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔ ✔ ✔ 

Recoverability 
Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔   

Disruption 
Time 

Requires a performance vs time 
curve, we expect to be able to get 
this from the DES model. 

✔   

Reconfiguration 
Time 

Required data on workstation 
changeover time (hours). 

 ✔  

Minimum 
Increment of 

Conversion 

Requires knowledge on the layout 
of the manufacturing floor. 

 ✔  

Configuration 
Convertibility 

Requires knowledge on the layout 
of the manufacturing floor. 

 ✔  

Mean Machine 
Utilisation 

Requires the average workstation 
utilisation rate, 

 ✔  
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Mean Time to 
Failure 

Requires the average time until 
machine fails from initial purchase. 

  ✔ 

Mean Time 
Between 

Failures 

Requires average time until 
machine fails after an initial failure. 

  ✔ 

Mean Time to 
Repair 

Requires workstation planned 
maintenance (hours). 

  ✔ 

Environmental 
Sustainability 

Indicators 

CO2 eq. 
Emissions 

Requires combining primary and 
secondary LCI data for estimating 
relevant process emissions. 

✔ ✔ ✔ 

Percentage 
Green Energy 

Usage 

Requires data on the location of 
the manufacturing facility and 
average energy composition (by 
source) of the local electricity grid. 

✔ ✔ ✔ 

Energy 
Intensity 

Requires mass of the produced 
component and workstation energy 
use. 

✔ ✔ ✔ 

Circular 
Economy 

Indicators 

Supply Chain 
Waste Factor 

Requires data on expired or 
scrapped parts. 

✔ ✔ ✔ 

Waste Factor 
Requires data on component 
weight and amount of scrap 
produced. 

✔ ✔ ✔ 

Average 
Recycled 
Content 

Requires component material 
composition. 

✔ ✔ ✔ 

Percent of 
Water from 

Circular 
Sources 

Requires data on the amount of 
water required during 
manufacturing and the source of 
this water. 

✔ ✔  

Percent Water 
Discharged 

Circular 

Required data on the amount of 
waste water produced during 
manufacturing and the disposal 
method for this water. 

✔ ✔  

Expiration 
Waste 

Required data on the amount of 
expired chemicals/components in 
inventory sent to waste. 

 ✔  

 

As previously mentioned, the special nature of sLCA indicators means that stakeholder groups and indicator 

categories significantly vary across the UCs. sLCA indicators  are also challenging quantitatively assess based 

on the planned ACCURATE DT simulation models.  Consequently a categorisation of these indicators is not 

presented in Table 9.  Further work conduced in the ACCURATE project in WP 3 and WP 7 will consider the 

qualitative social impacts, primarily focusing on enhancing the wellbeing of workers and training and 

upskilling opportunities, and qualitatively assessing risks to these factors under disruptions. 
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