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Public Summary

This deliverable is a part of the ACCURATE project which aims to increase the competitive abilities of European
manufacturing through manufacturing-as-a service (MaaS), digital twins (DTs), and decision support systems
(DSS).

One of the primary objectives in ACCURATE is investigating the resilience of MaaS systems during disruptions
and the impact of such disruptions on the short- and long-term sustainability of such systems. Work Package
(WP) 3 aims to addresses this research question, within the scope of individual nodes (i.e., manufacturing
facilities) within a MaaS system. The overall ambition in WP 3 is to deliver the knowledge and tools for
supporting the adaptation and reconfiguration of production processes within MaaS nodes from the
perspective of resiliency, sustainability, and human-centricity. WP 3 will enable the creation of create DT
modelling frameworks and associated DSS, with the above goals supporting MaaS nodes to perform
simulation-based performance prediction, robust optimisation, and consequently responsive control of
production processes.

This deliverable covers reports the progress in WP 3 towards establishing a conceptual basis for measuring
and subsequently optimising the resiliency and sustainability performance of production processes and
establishing the functional requirements for developing production-level simulation models within Maa$
nodes. The deliverable covers work performed in Task 3.1, Task 3.2, and partially in Task 3.3. Results from
these tasks, coupled with results from WP 2 and WP 7, have established a basis for quantitively assessing
resilience, sustainability, and circularity performance for MaaS nodes, considering factors including,
stakeholder priorities, data collection burdens, and applicability to simulation-based modelling. Results have
also identified specific indicators to measure the above performances for each pilot in the ACCURATE project.
Methodologies and results reported in this deliverable will be subsequently implemented in the ACCURATE
project in the form of discrete-event based simulation (DES) models of capable of measuring resilience,
sustainability, and circularity performance of production lines for MaaS nodes under nominal operating
conditions and under disruptions. These DES models will be used as a basis for developing production-level
DT models.
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1 Introduction

1.1 Project Context

The ACCURATE project vision is to realise manufacturing-as-a-service (Maa$S) value chains whose capacity,
profitability, and sustainability are robust to longer- and shorter-term exogenous disruptions. The ACCURATE
mission is to deliver a federated Maa$S framework, data space and ecosystem, powered by multi-level digital
twin models of MaaS$ value chains, to enable a collaborative, human-centred decision support system (DSS)
for robust planning, resilient operation and responsive value networks and industrial systems recovery. The
concepts, methods, and tools developed in the ACCURATE project will be applied, demonstrated and
validated in three pilot partners

1.2 Deliverable Scope and Key Outcomes

The scope of this report is to present the work done as a part of Work Package (WP) 3, Digital Twins
Supporting MAAS Production Adaptation. The overall ambition in WP 3 is to deliver the knowledge and tools
for supporting the adaptation and reconfiguration of production processes within MaaS nodes (individual
manufacturing facilities) from the perspective of resiliency, sustainability, and human-centricity. The work
reported in this deliverable covers results from Task 3.1, Task 3.2, and partially from Task 3.3.

First, the deliverable reports results on the functional requirements for developing the ACCURATE digital twin
(DT) models across the nine use cases (UCs) identified in ACCURATE. In this regard, the integration and
interoperability framework has been established, defining technical requirements for DTs, including
structured outputs, containerisation, and data exchange responsibilities. Model requirements have been
developed to capture process dynamics, assess disruptions, and support decision-making based on key
performance indicators (KPIs). Scenario configuration capabilities have been examined to facilitate disruption
analysis, time-scale planning, and performance evaluation. Additionally, requirements for assessing
sustainability and resilience have been established, ensuring alignment with production system
requirements.

Next, the requirement and data required for developing and usage of resilience-oriented production-level
simulation models based on discrete event simulation (DES) have been established across the three different
pilot partners. The development and implementation of production models across various cases have been
structured around shared data sources, including products, bills of materials, processes, resources, material
handling, and production planning.

Simultaneously, the methodology for quantifying resilience, circular economy (CE), and sustainability
performance was investigated, with the goal of coupling such indicators to the above simulation model.
Indicators were identified using a scientific literature review, and narrowed down based on applicability to
individual nodes in Maa$S systems as well as information provided by the ACCURATE pilot partners on data
availability, measurement complexity, and internal priorities. Two indicator screening tools were created to
screen for resilience and circularity indicators. An ontology was also created to integrate the selection of
circularity, sustainability, and resilience indicators into a manufacturing as a service context.

Finally, this deliverable lays out a recommended framework for resilience, circularity, and sustainability
assessment for the nine distinct UCs across the three ACCURATE pilot partners.
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1.3 Deliverable Structure

This report is split into six additional chapters, as follows.
e Chapter 2: Functional Requirements Engineering.
e Chapter 0: Circular Economy Circularity Indicators for a Maa$S System
Chapter 4: Resilience Indicators for a Maa$S System
Chapter 5: Sustainability Indicators for a MaaS System
e Chapter 6: Ontologies for Architecting Circular and Sustainable Manufacturing-as-a-Service System
e Chapter 7: Circularity and Sustainability Assessment Framework for a Maa$S System

In Chapter 2, the functional requirements for the DTs are discussed. This discussion includes integration and
interoperability between models, functional requirements for the models and an overview for the planned
models for each ACCURATE pilot partner. Results from Chapter 2 are used as a basis for formulating the
requirements for resilience, circularity, and sustainability assessments in Chapters 0-5.

In Chapter 0, an overview of a circularity indicator screening tool is presented, along with consideration of
the circularity indicators presented for the UCs in the ACCURATE project. These indicators are linked to
ACCURATE UCs in Chapter 7.

Chapter 4 presents a literature review on resilience indicators and details an indicator selector tool that aids
the user in choosing resilience indicators for their own scenario. These indicators are linked to ACCURATE UCs
in Chapter 7.

Chapter 5 provides an overview of the methodology for estimating environmental and sustainability
indicators using the life cycle assessment framework, and their applicability to MaaS nodes. These indicators
are linked to ACCURATE UCs in Chapter 7.

Chapter 6 discusses a novel ontology model created in the ACCURATE project for assessing circularity and
sustainability in Maa$S systems. The ontology models were developed from the assessment methodologies
discussed in Chapters 5-6 and will be used for eventually extending ACCURATE matchmaking services.

Chapter 7 provides a conceptual framework for future work on the DTs models, specifically highlighting
indicators for circularity and sustainability assessment for each UC. It builds on results from Chapters 0-5
which identify a general methodology for screening indicators for resilience, circularity, and sustainability
performance, as applicable to individual nodes in MaaS$ systems.
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2 Functional Requirements Engineering

In order to achieve the main goal of the project the Digital Twins must integrate across multiple scales, from
individual manufacturing processes to entire supply chain networks. This requires well-defined functional
requirements that ensure interoperability, adaptability, and reliability. Chapter 2 outlines these critical
requirements, establishing the foundation for the development and implementation of DT models across
ACCURATE's pilot cases.

This chapter is structured in three main sections:

1. Integration and Interoperability Requirements — This section defines the essential requirements for
seamless communication between DT models and external systems. As DTs must interact with various
data sources, simulation models, and decision-support tools, standardization in structured output
delivery, orchestration, containerization, and data exchange is necessary.

2. Models needed to be developed — This section presents the output of Task 3.1, detailing the
identified models that need to be developed and their mapping to the relevant use cases where their
added value will be demonstrated.

3. Resilience-oriented production models — This section details how DT models will incorporate
resilience mechanisms into production planning. By simulating disruptions, assessing recovery
strategies, and optimizing reconfiguration processes, these models contribute to maintaining
operational stability even under uncertain conditions. The chapter highlights key resilience-related
KPIs and the methodologies for evaluating them.

2.1 Integration and Interoperability Requirements

To ensure seamless integration and interoperability, the models, DTs must support the following
requirements:

1. Structured Output Delivery:
e Models should deliver outputs in a structured format compatible with other user
tools/models as requested by the client tool.
2. Orchestration and Status Declaration:
e Models intended for use in orchestration with other systems must declare their status to
facilitate automatic data exchange.
3. Invocation and Execution Requirements:
e Containerised Deployment:
i If a DT is to be invoked by an external function or client, it should be provided as a
container that includes all dependencies required for its execution.
e Configurable Data Exchange Location:
i DTs should support access through a configurable data exchange location for
communication with external functions or clients.
e Control Bus Implementation:
i DTs should implement a control bus to support single-point evaluation, streamlining
integration with external systems.
4. Data Exchange Responsibility:
e Black Box DTs:
i Responsible for managing data exchange with the data sources required for their
execution.
e White Box DTs (e.g., DSS):
i.  The client (e.g., DSS) is responsible for orchestrating data exchange with the data
sources required for the DT's execution.
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2.2 Models needed to be developed

The models developed to support the adaptation and reconfiguration of production processes are designed
to:

e Accurately capture and simulate critical dynamics at both the process-chain and higher-level nodes.

e Incorporate key events and disruptions across multiple nodes and hierarchical levels using a
parametric approach.

e Enable quantitative assessment of the impacts of both known unknowns and unknown unknowns
on output performance and system resilience.

e Provide actionable insights for decision-making through sustainability-focused and performance-
oriented KPIs.

Functional Requirements
Scenario Definition and Configuration

Models must enable users to configure and change inputs for scenario creation. These scenarios should
support:

1. Disruption Event Introduction:
e Address disruptions and their impacts across hierarchical levels, including:
e Machine/Equipment Level: Variables such as machine speed, reliability, scheduled
stops, setups, energy consumption, and other resource usages.
e Process-Chain Level: Incorporate aggregated impacts from equipment-level
variables.
2. Time Scales and Horizons:
e Support planning across different time scales:

e Short-Term (Days/Weeks): Analyse initial production status, machine condition,
deadlines, and potential delays.

e  Medium-Term (Weeks/Months): Evaluate medium-term production efficiency and
planning adjustments.
e Long-Term (Months/Years): Assess average productivity and long-term performance
during design and reconfiguration phases.
Output and Result Requirements

Models must provide robust output capabilities to meet various performance evaluation needs:

1. Quantitative Measurements:
e Assess and measure performance under specific scenarios defined by user inputs.
2. Key Performance Indicators:
e Supply a comprehensive list of available KPIs to ensure the model aligns with task
requirements.
e Compute performance metrics across the following categories:
i.  Process-Chain Level:
e KPIs such as availability, production rate, equipment utilisation, work-in-
progress, lead time, and resilience metrics.
ii. Circularity and Sustainability:

e Provide methods to directly and indirectly compute sustainability-related
KPls.

A clear overview of the models developed under the ACCURATE project, including their implementation,
interaction, and demonstrated value in the UCs, is presented in the table below:
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Use-case
Pilot

(All use-cases are described in
detail in D7.1)

UC1: Supply Chain (SC)
disruption monitoring by DT-
based simulation

Model type/
Methodology
(Indicates the category of
models used)

DES

Explanation Methodology
(Refers to specific models or tools
applied)

SC stress test a part

14

Expected Outcome/Benefits
(Purpose of applying each model)

Measure performance impact of
defined set of disruptions

Task under which the model has been

identified/developed

(Responsible task for developing the model)

T4.1 SC components and process
definition & Data collection

T4.2 SC stress-testing simulation
T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS

UC2: SC design support by
identification of hidden
critical suppliers/material

ABS, DES, and Network
science

SC stress test for a part with
systematic experiment design
features

Identify critical nodes for
unknown disruptions

T4.1 SC components and process
definition & Data collection

T4.2 SC stress-testing simulation
T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS

UC3: SC design
recommendations for better

Analysis methodology,

Coordinate the SC and

Enhance multi-criteria decision-
making (MCDM) in supplier
selection by incorporating

T4.6 Design of a resilience- and

absorption and swift Optimisation manage risk sustainability, quality, reliability, sustainability-oriented DT-based DSS
AIRBUS adaptation :’jistlilézrfcaec,tsgfsblllty, and other
ATLANTIC

UC4: Integrated assessment
of supply and internal value
chains by means of DTs

Analysis methodology,
Probability and statistics,
Optimisation

Manage demand, solve lots of
size problem, integrate
external and internal SCs

1. Demand-driven material
requirements planning (MRP) to
smoothen the deliveries (e.g.,
via thresholds, summaries of
daily consumption, parametric
models for replenishment)

2. Add buffers to strategic critical
points of the supply and internal
production workflow

3. Include prediction on delivery
dates to anticipate missing
components

T4.3 Optimisation of material flow in
MaaS SC

T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS

DES

Capture both material flow
and disruptions at SC and
shopfloor level

Enhance decision making by
considering both SC level and
shopfloor level factors

T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS




ACCURATE

TRO

Use-case

(All use-cases are described in
detail in D7.1)

Pilot

UC1: SC stress-test and
optimisation: Inventory
management under
fluctuating demand forecasts

Model type/
Methodology

(Indicates the category of
models used)

Explanation Methodology
(Refers to specific models or tools
applied)

Simulate the SC with

15

Expected Outcome/Benefits
(Purpose of applying each model)

1. Improve inventory
management policies
2. Minimise delays, reduce

Task under which the model has been
identified/developed
(Responsible task for developing the model)

T4.1 SC components and process
definition & Data collection

DES and ABS . . . T4.2 SC stress-testing simulation
customised SC policies inventory costs, reduce dead . i
stock, ensure timely availabilit T4.6 Design of a resilience- and
! y y sustainability-oriented DT-based DSS
of resources
Simulate the SC with decision- . T4'.1 SC components and. process
making process and allow 1. Improve inventory definition & Data collection
DES and ABS gp management policies T4.2 SC stress-testing simulation

complex adaptive system
approach

2. Improve fab performance

T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS

Probability and statistics

Model demand forecast
fluctuation

1. Represent and model the
fluctuations of demand forecast
for different time horizons (long-
term, mid-term, short-term);

2. Instantiate the simulation and
optimisation models under
uncertainty

T4.3 Optimisation of material flow in
Maas SC

UC2: Production planning:
Batching optimisation

DES

Simulate the behaviours of
batching practices/approaches
and formalise decision
analytics (optimisation)

Increased efficiency through
optimal batch sizing

T3.4 Robust Optimisation & Control of
Production DTs

UC3: Production planning and
control: Scheduling,
dispatching, monitoring for
lot excursions

Modelling methodology,
probability and statistics

Track, trace, and monitor lots
of excursions

Estimate the waiting
time/processing time
distributions between
workshops; Estimate the cycle
time

T3.4 Robust Optimisation & Control of
Production DTs

Optimisation, DES

Monitor and optimise the fab
performance under
uncertainty

1. Align global (fab-wide)-local
(workshop) decision/targets

2. Demonstrate an approach to
addressing suboptimal
production performances

T3.4 Robust Optimisation & Control of
Production DTs

T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS
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Use-case

(All use-cases are described in
detail in D7.1)

Model type/
Methodology
(Indicates the category of
models used)

Ontology, simulation
models

Explanation Methodology
(Refers to specific models or tools
applied)

Ontology is required for
achieving semantic
interoperability and
simulation is required for
analysis

16

Expected Outcome/Benefits
(Purpose of applying each model)

DT-based scheduling
optimisation

Task under which the model has been

identified/developed

(Responsible task for developing the model)

T 2.2 Ontology-based matchmaking
T3.2 Resilience-Oriented Circularity &
Sustainability Assessment

T 3.3 Resilience-Oriented Production
Modelling and Simulation

CONTI

UC1: SC stress-test in the very
high complexity context

DES

SC stress test for a defined
product

SC stress test, measure
performance impact of defined
disruptions

T4.1 SC components and process
definition & Data collection

T4.2 SC stress-testing simulation
T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS

UC2: Optimisation of material
flow along the SC

Analysis methodology,
Optimisation

Map and optimise the
circulation of material along
the supply chain in terms of
guantities to
order/produce/distribute for
different time horizons

1. Minimise materials stock
(particular attention will be paid
to obsolete materials)

2. Maximise customer
satisfaction and minimise the
associated logistic costs

T4.3 Optimisation of material flow in
Maas supply chain

UC3: Integration of
production planning with
production control

DES, Probability and
statistics

1. Analyse historical
disruptions/disturbances

2. Enhance the robustness of
production planning under
disturbances/disruptions and
the performance of
production control

3. The material flow behaviour
and equipment
reconfiguration of the
production system can be
effectively captured using DES
modelled.

1. Ensure consistency between
production planning and
production control

2. Demonstrate an approach to
addressing suboptimal
production performance:
Reduction of downtimes
resulting from reconfiguration
activities

T3.4 Robust Optimisation & Control of
Production DTs

T4.6 Design of a resilience- and
sustainability-oriented DT-based DSS

Ontology, simulation
models, optimisation
algorithms

Ontology is required for
achieving semantic
interoperability and

Estimation of capacity at a given
time or alternatives to achieve

T 2.2 Ontology-based matchmaking
T3.2 Resilience-Oriented Circularity &
Sustainability Assessment
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Use-case

(All use-cases are described in
detail in D7.1)

Model type/
Methodology

(Indicates the category of
models used)

Explanation Methodology
(Refers to specific models or tools
applied)

simulation is required for
analysis

17

Expected Outcome/Benefits
(Purpose of applying each model)

the defined capacity at a given
time

Task under which the model has been
identified/developed
(Responsible task for developing the model)

T 3.3 Resilience-Oriented Production
Modelling and Simulation

ALL

MaaS: Proof Of Concept

Modelling methodology,
semantics

Analysis of semantic
relations/interdependencies
between information
elements.

Foundation for ontology-based
matchmaking of services to
requirements (mainly
determined by to-be produced
products)

T 2.2 Ontology-based matchmaking
T2.3 Semantic services development

Modelling methodology,
Optimisation

Dynamic pricing for Maa$S

1. Endow the Maa$ framework
with a dynamic pricing
functionality

2. Demonstrate the feasibility of
enhancing the responsiveness,
flexibility, and scalability of
manufacturing industries via
Maa$S

3. Extend the scope of the
conventional disruption
mitigation strategies

T4.4 Dynamic Pricing for MaaS

Modelling methodology,
Optimisation

Schedule a set of on-demand
manufacturing jobs on shared
manufacturing resources

1. Endow the Maa$S framework
with a scheduling functionality
2. Demonstrate the feasibility of
enhancing the responsiveness,
flexibility, and scalability of
manufacturing industries via
MaaSs

3. Extend the scope of the
conventional disruption
mitigation strategies

T4.5 Design a MaaS$ SC robust to
disruptions

Towards adoption of MaaS
(dispersion of manufacturing
services across both

Survey

Understand the barriers
affecting the Maa$ adoption
in life-critical sectors: A case

Facilitate the adoption of Maa$
at the ecosystem level —
spanning companies, countries,
the EU, and globally — under

T4.4 Design of a resilience- and
sustainability-oriented digital DT-based
DSS
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Use-case el e Explanation Methodology . Task under which the model has been
. ,, Methodology » Expected Outcome/Benefits : e
Pilot (All use-cases are described in (indicates the cat y (Refers to specific models or tools (Purpose of applying each model) identified/developed
detail in D7.1) naicates the category o, applied) & A (Responsible task for developing the model)
models used)
geographical and logical study of AIRBUS ATLANTIC, both: Normal Operating
boundaries) CONTINENTAL, TRONICO Conditions (driven by economic

and environmental values), and
Abnormal Operating Conditions
(driven by survival and recovery
motivations)

Table 1: Overview of models needed to be developed for each UC in the ACCURATE project

All the models listed in the table will be described in detail in the corresponding deliverables, primarily those from WP2, WP3, and WP4. Some of these
deliverables have already been submitted, while the remaining ones are scheduled for delivery in M22.
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2.3 Resilience Oriented Production Models

This section provides a concise summary of resilience-oriented production models being developed to
address the challenges identified for each UC, considering specific scenarios and disturbance factors.

The underlying concepts of individual production models, along with the challenges they aim to resolve within
the internal value chain, are briefly outlined. Despite their unique objectives, these models share a common
architectural structure, as illustrated in Figure 1 below.

Constraints/ limits
Parameters (Workstation, transport, product)

Workstation {/

* Capabilities
* Cycle times — )
+ Reliability g — KP11

Material handling Production models for : =
+ Capacity . g S KPI2
. Speed ‘ internal value chains

L_r/i > KPI3

Product parameters

* Flow characteristics ,
+ BOM ‘/]‘

* Batch, volume

Process model and algorithms

Figure 1: IDEF-0 model representation of the main entities and relation with the production models
Data sources

The data required for both the development of the models and their subsequent usage cycle follows a shared
classification or taxonomy across most use UCs, as illustrated in Figure 2. Below is a list of the primary entities
for which data collection is essential.

In the input side for the production models summarized parameters of workstations, Material Handling and
Products are processed fed.

Workstation related parameters characterize main behaviour or a workstation such as:

Capabilities — what the workstation can perform in terms of processes required by the product process plans
to transform the input to output.

Cycle times — the times necessary to carryout operations.

Reliability — the probability or percentage that availability that machines are available without being subject
to failure.

Material handling related parameters characterize the capacity of transporting parts and work in progress in
the factory. These include:

Capacity — the maximum quantity or units of materials that the equipment can handle at a moment
Speed — The speed in which the transporters can cover distances in the factory

Product parameters in relation to the system are also key inputs such as:
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Flow patterns and routes — define the logic and sequence of parts movements from input material until the
end of the processing.

Bill of materials — the list of sub-components and their hierarchical structure to form the product
Batch and volumes — define if products are produced in minimum lots or required quantities per time period.

In order to calculate the above-mentioned parameters, data collection templates are prepared as partially
shown below:

Product and Families

Product SKU Product name Product family

Bill of materials

Component # |[Component name|Quantity |Process # |Component Weight|/Component Material| Unit Type

Processes

Process # |Process name [Short description [Flow time (s/pcs) Flow policy |Condition

Workstation and resources

Tool
) Unplanned (Scheduled
Workstatio |Resource [Total Average [Planned changeover
n No name available |Utilization |maintenance [shut downs [shifts time
Material Handlers
Handler No Resource name Capacity Speed Availability

Figure 2: Structure of the template used for data collection about internal value chains of the UCs.

- Products and families

- Bill of materials

- Processes

- Workstation and resources

- Material handlers and transportation
- Production planning and flow logics

The production models being developed are as follows:
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1) Integrated assessment of supply and internal value chains by means of DTs for AIRBUS ATLANTIC

In this UC the production models developed for are designed to facilitate robust planning capabilities that
dynamically adapt to changes in internal value chain parameters and external supply chain factors affecting
performance. Examples of such changes include shop floor disruptions at equipment and workforce level such
as unforeseen failures, planned stops or external factors such as transportation delays impacting material
arrival dates, and last-minute customer specification updates. In order to achieve the UC objectives, the
production models integrate comprehensive assessments of Airbus Atlantic’s supply and internal value
chains, enabling rapid adjustments that enhance resilience related KPIs. The primary focus is on improving
both short-term and long-term resilience, as measured by KPlIs.

Targeted KPIs and Data Sources

Various data sources are utilised to gather information for the development of DES models. This includes data
on internal processing stages, production resources, production flows of selected product types, supply chain
and logistics for component supply, and historical reliability data of suppliers. Additionally, the bill of
materials—capturing the internal component flow from the Manufacturing Execution System (MES) and
external component supply from the Enterprise Resource Planning (ERP) system—is leveraged to develop the
models. Furthermore, availability and timing data for production resources are also collected. Integrating
these diverse data sources into the models ensures a comprehensive and accurate representation of the
factory's operations, facilitating precise analysis and optimisation of the target KPIs.

Some of the output KPIs that will be calculated/forecasted by the models are:
e Short term output KPIs that can be calculated are:
o Leadtime
o Workin progress
o On-time delivery (OTD) or delays
e Medium term
o Production rate (cumulative for a relatively longer period)

2) Production planning reconfiguration under disruption for CONTINENTAL

This production model emphasises the robustness and reconfigurability of production planning at
CONTINENTAL's factory in Timisoara (Romania), considering the effects of various internal and external
factors. The primary objective is to develop models that enable the production scheduling system to adapt
effectively to changes and disruptions while maintaining efficiency and meeting demand.

The main factors impacting on planning robustness and that should be captured by the production model
include: 1. Demand fluctuation, 2. Missing components / insufficient inventory, 3. Unusable components, 4.
Warehouse space constraints, 5. Capacity and utilisation challenges, 6. Machine breakdowns and 7. Variability
in production yield and process duration.

Targeted KPIs and Data Sources

The production models will use data obtained from the CONTINENTAL systems, e.g. the system status, work
in progress and fulfilled production orders to model relevant aspects of the manufacturing system. The data
exchange may be asynchronous and initiated by the user.

Decision variables include allocation of production orders towards manufacturing resources as well as
selection of material flow options; the main DTs focus is the logical reconfiguration of the production system.
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The UC will target the following KPls:

e Resilience

e Delivery rate

e Lead time and OTD
e Sustainability

Additional KPIs will be included in future versions of the production models.
3): Production scheduling optimisation and shop floor control for TRONICO.

In this case the production models aim to improve production scheduling and shop floor control. The models
focus on supporting efficient scheduling to handle disruptions efficiently and optimising the production flow
in TRONICO production system considering the short term and medium-term planning needs. The models
should lead to significantly reduced downtimes arising from product changes and reconfigurations and
improve overall efficiency. The manufacturing system level models could allow to propose the best strategies
to manage scenarios that arise from internal disruptive events and managing them through the right size of
work-in-progress (WIP) and prioritisation of production tasks. The models will contribute to shift from the
currently adopted infinite capacity planning approach towards a finite capacity scheduling approach.

Targeted KPIs and Data Sources

Historical data is collected on the macro-stages of the TRONICO production system. This data is cleaned and
restructured according to the DES requirements and approximations are made where details are missing in
the historical data.

The target KPIs that are calculated by the production models

e Resilience

e Blocked production orders
e QOTD

e lead Time

e Sustainability KPIs

4) Production planning batching optimisation for TRONICO.

This production model focuses on defining the ideal batch size for production, considering TRONICO's
production capacity and necessary tools. This approach seeks to determine the most efficient batch sizes for
different stages of production, such as larger batches for component mounting systems (CMSs) and smaller
batches for subsequent manual operations. The current practice lacks a standardised method for determining
batch sizes, relying instead on individual experience and intuition.

Targeted KPIs and Data Sources

Although the decision variable in this production model is different compared to the model number 3, the
output KPIs and the data sources used are similar.
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3 Circular Economy Circularity Indicators for a Maa$S System

This chapter discusses the methodology for measuring CE performance of MaaS systems in the ACCURATE
project. The chapter provides a general overview of product-level CE indicators, and the recently published
ISO standards for CE measurement. Finally, the chapter describes the circularity indicator screening tool
developed in the ACCURATE project.

3.1 Introduction to Circularity and Sustainability Indicators

The transition from traditional linear economic models to CE approaches is essential as global resources
diminish, and environmental damages increase. Traditional linear models, i.e. 'take-make-use-dispose’,
economic models are proving to be unsustainable, this in turn promotes for society a shift towards a circular
economy that tries to minimise waste and maximise resource efficiency through so-called restorative and
regenerative processes. This approach tries to help to maintain materials and value over time, thereby creating
a model that reduces the need for new raw materials and minimises waste production. Circularity involves
the reutilisation of resources to reduce waste by maintaining products and materials in closed loops of
production and reuse. A CE seeks not only to reduce environmental impacts but also to enhance economic
benefits by transitioning from finite to renewable material sources (Lieder & Rashid, 2016).

Indicators play a crucial role in managing and evaluating the implementation of CE strategies, allowing for the
guantitative measurement of sustainability progress across various metrics. These indicators provide the
metrics needed to track performance improvements, inform decision making, and perhaps even policy
development, all in all addressing the challenges of resource use and environmental pollution. CE indicators
are thus of high importance to the entire transition. The selection of appropriate CE indicators has many
challenges due to the diversity of metrics and the complexity of their applications. Implementation of a CE
framework relies on choosing the right indicators that reflect the sustainability goals of the organisation at
hand and this can be a challenge for most organisations to even find what data availability they possess.
Furthermore, the lack of standardisation and complex measurement frameworks can prevent and delay utility
(Goddin et al., 2019).

3.2 ISO Standards on Circular Economy

The 1SO 59000:2024 series of standards are designed to provide comprehensive guidelines and frameworks
for implementing CE principles across various industries (Standardization, 2024a, 2024b, 2024c). These
standards aim to promote sustainable development by encouraging the efficient use of resources, minimising
waste, and enhancing the overall sustainability of products and processes throughout their life cycles.

3.2.1 Measurement and assessment of circularity performance

ISO 59020, a part of the ISO 59000 series, specifically focuses on the measurement and assessment of
circularity performance within  organisations (Standardization, 2024c). It provides a standardised,
comprehensive framework that includes core indicators for evaluating resource inflows and outflows, energy
and water use, and economic factors. These indicators are crucial for ensuring consistency and comparability
across different organisations and sectors, enabling a holistic view of circularity performance. Utilising the
core indicators of ISO 59020 facilitates the ability of companies to reference, share, and benchmark their
circularity results against others. This standardisation ensures that the assessment framework is robust and
methodologically sound, helping organisations track and improve their circularity performance. Moreover,
adhering to ISO 59020 helps organisations comply with international standards of measurement, supporting
transparency, and promoting best practices in CE initiatives.
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The core indicators of ISO 59020 are divided into several categories, each focusing on different aspects of
circularity performance, mass inflows, mass outflows, water, energy, and economic. These categories ensure
that all critical aspects of circularity are covered, enabling organisations to comprehensively assess and
improve their circular economy practices.

A list of mandatory and optional indicators from the ISO 59020 were compared with the list of product
circularity indicators from Jerome et al. (2022). It was found that the product level indicators already identified
adequately covered the mass inflow, outflow, and energy indicators outlines in the ISO 59020 standards,
however there were key gaps that the I1SO indicators filled, specifically in the category of water, which was
not covered by the product level circularity indicators.

3.2.2 Circular Economy Actions

As organisations shift towards a CE, the ability to measure and trace this transition towards circularity
becomes increasingly important. Many circularity indicators are used as tools in this process, providing
knowledge, in the form of various KPls, into how well a company or production system is performing regarding
many aspects linked with circularity. However, given the broad scope of these indicators, many could
potentially fit into so-called circular action categories within the circular economy framework. These CE
actions are defined in ISO 59010, guidance on transition of business models and value networks
(Standardization, 2024b). These actions help define what each indicator can contribute towards reducing the
impacts of maintaining a linear economy.

It should be noted that these actions are generally used to describe what a company or organisation can do
to mitigate the linear economy and strengthen its transition to a CE. The CE framework is built on several core
actions that drive the transition from a linear to a circular model. These actions are defined to try and
maximise resource efficiency, minimise waste, and promote circularity across all stages of a product’s life
cycle.

3.3 Circular Economy Indicators and Actions Categorisation

On reviewing the different indicators for CE measurement, it was evident that not all indicators are applicable
towards CE measurement for MaaS nodes and the selection of indicators for assessment of CE performance
can vary, depending on the priorities of the manufacturer and data availability. Due to lack of a systematic
approach for categorising indicators in an easy-to-use manner, the ACCURATE project has developed a tool
for screening CE indicators (further elaborated in Section 3.4). The tool focuses on screening resource-based
product level CE indicators based on the requirements for simulation models establishes in the UCs. The
following sections describe the methodology for developing the tool.

In order to create a tool that screens for indicators based on the data available to the user, indicators need to
be categorised and presented by category. To create such a tool, the methodology used, behind the current
framework, stems from an iterative approach to finding the more efficient and feasible ways of implementing
a tool that from a set of criteria can selectively choose the indicators that match those. The original paper
that the product circularity indicators were gathered from Jerome et al. (2022), grouped each indicator
together by their class and measurements. The proposed tool instead categorises indicators and data by the
data types used in the calculation of these indicators. This was considered to be a better method for the
purposes of the ACCURATE project, as many of these indicators do not necessarily include the same ways of
quantifying them, referring to the exact measurement terms included in their formulas. The selected
indicators for the screening tool use linearised formulas, that do not require any numerical approach to
quantify.
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All indicators use terms of measurements that fall into three general groups of physical measurements of
mass, time and energy (Aher & Ramanujan, 2024). This is seen throughout each indicator present, however,
small deviations in forms of mass fractions of a product or subassembly and alike are also used. Although not
directly a mass parameter, they can be very closely aligned and related to that of regular mass terms
measured in units of mass (kg).

By choosing to categorise based on terms, e.g. mass terms such as mass of products (Mprod) regardless of
what measurements the indicators quantify on their own, it is possible to group each of the three general
terms of mass, energy and time, that is included in each of the indicators, into larger groups for which they
generally belong in and conform to. This procedure was done by analysing the flows that each of these terms
are defined by in the flowchart, as each indicator has a unique flowchart (Jerome et al., 2022).

The reason for grouping these terms together in this way is that one of the main ideas behind the framework
is to create criteria for which each indicator is conditioned by. These criteria are more or less just the terms
themselves, however, a question regarding the criteria is added. This question will often just be whether the
user can estimate data regarding the different measures that the terms quantify. This will be explained further
in the later sections.

These criteria needed to be grouped together because each of them constituted one of the terms used in the
indicators. If each term was assigned to a criterion, and each criteria needed to be given a question, then
there would be 40+ criteria that one should respond to and address. This would in turn also make the
selection process simpler. This would suddenly be a very long list of criteria, and thus it was decided that
creating these groupings/categorisations of terms/criteria would make the process of addressing them more
convenient. The convenience appears from creating an overall criterion for each of these groups,
corresponding to each of the categories. Each of these overall criteria has underlying criteria that is associated
with that category. If one cannot fulfil the overall criterion, then they would not be able to fulfil the underlying
criteria either. This does, however, make some overall criteria broad, in the sense that it needs to cover all
the underlying criteria. In the end, the user might have to answer far fewer questions if they have limited data
(as expected in many cases) and thus would only be exposed to a lesser number of questions.

All the criteria themselves are listed as a question, specifically they are set up to inquire the user regarding
the data they can gather. Most criteria start with a question: Can you estimate data on ____, followed by the
nature of the indicator term that the criteria refer to. For example, the criteria regarding the product mass
term of Mprod is listed as: Can you estimate the data on the total mass of the product? Each criterion is
followed by a description of what is meant by the question itself, which is usually short in nature due to the
rather simple quantifications of these terms. For example, the description of the Mprod criteria is: “Total
mass of end-products”. Having established the list of indicators and the criteria, along with a description
explanation of each in regard to the flowchart, they could then be implemented together to form the
framework of the tool.

By narrowing down the categorisation to the more core functionality of each indicator in terms of their action
contribution, one can provide a less cluttered and more focused view of how they contribute to specific
circular actions. For example, an indicator that measures recycling rates is categorised under actions that
contribute to value recovery because its primary function is to assess material recovery through recycling.

Furthermore, the indicators used in the screening tool were mapped onto each category. There are five
categories of CE actions defined in the ISO 59010 standards, that are adopted in the screening tool as follows:

1. Create Added Value: These actions focus on optimising processes, improving resource efficiency, and
enhancing sustainability to increase the overall value derived from materials, products, and services.
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Indicators in this category typically measure efficiency improvements that reduce costs, waste, and
environmental impacts, thereby directly adding value to the production process.

2. Contribute to Value Retention: This group of actions is concerned with extending the lifespan of
products and materials through reuse, maintenance, refurbishment, and remanufacturing. Indicators
here assess how well a system retains the value of resources by keeping them in use for as long as
possible.

3. Contribute to Value Recovery: These actions are focused on recovering value from products,
components, and materials that have reached the end of their initial use. Indicators in this category
typically measure the effectiveness of recycling, material recovery, and reintroduction into the
production cycle.

4. Regenerate Ecosystems: This category encompasses actions that contribute to the regeneration and
sustainability of natural ecosystems. Indicators here might measure the use of renewable resources,
the reduction of environmental impacts, or the adoption of regenerative practices in production.

5. Support a Circular Economy Transition: These actions facilitate the broader shift towards a circular
economy by guiding strategic changes, measuring overall circularity, and demonstrating the
economic viability of circular practices. Indicators in this category provide insights into the
overarching progress of an organisation or system towards circularity (Standardization, 2024b).

Given the broad applicability of many indicators, it might seem that they could fit into several, if not all, of
these action categories. Many indicators do implicitly contribute to multiple areas of circularity, especially
those that enhance process efficiency, which could be seen as adding value in a broad sense. However, to
avoid overlap and ensure that each indicator is recognised for its primary function, it was chosen to categorise
them based on what they explicitly measure and the most direct action that they support and contribute
towards. This involved defining the explicit contribution and the core function of an action. While indicators
often contribute to various circular actions implicitly, this categorisation focuses on the explicit outcomes
they are designed to measure. This approach tries to identify the primary, and more explicit role each
indicator plays within the CE framework.

3.4 Description of the ACCURATE Circularity Indicator Screening Tool

The product-level circularity indicators used in the ACCURATE project quantify the circularity of a product by
assessing different aspects of its production, use, and disposal phase, as shown in Figure 3. This image
specifies system boundaries and important material flow throughout a manufacturing system.

Production auxiliaries
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Figure 3: System Boundaries of Product Lifecycle Used for Circularity Indicator Calculation (Jerome et al., 2022).
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The ACCURATE project has developed a CE Indicator Screening Tool to address these challenges by simplifying
the process of screening appropriate CE indicators. This tool is designed to help various stakeholders choose
relevant indicators, with a focus on product- level indicators, through a series of questions that reflect specific
terms included in the CE indicators. The main objective of the study is to create a robust indicator framework
by systematically classifying indicators into a comprehensive list and establishing a methodology to narrow
them down. This framework will aid in screening the most relevant indicators for evaluating progress towards
circularity and sustainability.

Microsoft Excel, with its already established graphical user interface (GUI) and interactive capabilities through
macros and Visual Basic for Applications (VBA), was chosen to implement the tool. The core functionality of
the tool is to organise a selection of CE indicators based on the user’s input regarding what indicators are
accessible for their particular data availability. This is achieved through a criteria selection process where
users tick checkboxes to indicate which criteria they can fulfil, as seen in Figure 4.

Submit

ROk OO ORI T E ]

6§RACCURATE

Funded by
the European Union

Inputs - Filtering

CISMS

Selection Criteria

Mass terms

M t lated t ificati f M f ts refer to thi ight of th
Can you estimate the data on the mass of products and co-products manufactured or - ass terms related .0 speci I_Ca ions of a _e!ss of products refer to the weight of the
roduced? product. A product is a physical-based [finished product that leaves the
P ) object designed for or utilized with a manufacturing aggregated process (M)
Product-related terms L 5
Description Flowchart explanation
Multi-terms YLy
K . This mass term refers to the mass of a
. . . Mass of the ith component in a product N
Can you estimate the mass of a given component in a product? r single component of a whole product. The
(part of a total assembly) . X
flow is therefore the same as the entire

Figure 4: Circularity Indicator Screening Tool Criteria Input Selection Tab.

The user interface (Ul) of the ACCURATE CE Indicator Screening Tool is crafted to be intuitive and user-friendly,
ensuring users can easily navigate through the process of selecting appropriate circular economy indicators.
The tool’s layout is structured to ensure logical flow and ease of use. It comprises:

e Input Section: Where users input their criteria and select relevant checkboxes.
e (riteria Sheet: Displays all possible indicators and their corresponding criteria.
e Output Section: Shows the results after criteria submission.
o FlowChartReadMe Sheet: Provides a comprehensive guide to the flowchart model used for the

indicators.

Each section is clearly labelled and logically arranged to guide the user through the selection process

seamlessly.

The Input Section, shown in Figure 4 allows users to provide their specific data and select relevant criteria.

Key components include:

e Checkboxes: Represent different criteria that users can select based on available data. These are
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grouped into categories for easy access.

e Dynamic Rows: Implemented using VBA code, dynamic rows show or hide based on checkbox
states, ensuring only relevant options are displayed. This helps guide the user towards illustrating
what indicators they both can and cannot calculate with the information they have at hand.

Each criterion is linked to a checkbox. These checkboxes contain the logic for the criteria and store this
information in the far-right corner of the sheet. This is because VBA cannot access information across different
objects.

To implement the hierarchical branching of the criteria, effective visual formatting is required. When a
criterion is fulfilled, additional criteria should become visible to the user. This effect is achieved by utilising
macros through VBA in Microsoft Excel, essentially through the logic of each of these checkboxes. These
checkboxes are part of the developer tool in Microsoft Excel and are interactive objects that can be placed
arbitrarily, but more importantly, within a given cell.

The information that the checkbox stores is the name of the term in each indicator formula that they
represent. For the criterion, Can you estimate the data on the total mass of the product?, this refers to the
mass term: Mprod. A separate macro, acting as the way of submitting the answer to the criteria, is created to
locate all the terms of the criteria that have been stored. If it finds a term, it will also register that criterion to
be fulfilled.

The Criteria Sheet, shown in Figure 5 functions as the taxonomy of the indicators, listing all possible indicators
along the rows and the criteria along the columns. If an indicator contains the term that the criteria are
defined by, a ‘check’ is placed in the cell that corresponds to the row of the indicator and the column of the
term, as shown in Figure 4. This sheet uses visual cues like colour coding to show which criteria are fully or
partially met, aiding users in understanding their data compatibility. Indicators with all terms/criteria fulfilled
are shown in green, those with at least one or more criteria fulfilled are shown in yellow, and those with no
criteria fulfilled do not change colour.

Indicator Taxonomy

Flowchart
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process auxiliaries consumed during the product

https://doi.org/10.1039/ . . .
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Figure 5 Circularity Indicators Screening Tool Criteria Sheet Example

The Output Sheet, shown in Figure 6 illustrates the selection of indicators that fully match the answers to the
criteria in the InputSheet. The information shown here is copied from the Criteria Sheet. It is thus a sheet
dedicated to the indicators that have all criteria fulfilled by the inputs.
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Circularity Indicators Access Description . 1
(C-Indicators) Link ormulta

Actions that create added value

Actions that contribute to value retention

Actions that contribute to value recovery

Figure 6 Circularity Indicators Screening Tool Blank Output Sheet

The FlowChartReadMe sheet provides a comprehensive guide to the flowchart model, shown in Figure 3, used
for the indicators, detailing the phases and processes each indicator measures. It includes an explanation
based on Jerome et als paper and outlines key phases like the extraction phase (E) and material production
phases for both non-renewable (MPa) and renewable materials (MPb); these phases are shown in Figure 3.
This sheet serves to clarify the model and its components, which enhances the user’s understanding of the
indica- tor measurements. The main flowchart model description was sourced from the supplementary
materials provided in Jerome et al. (2022).

The user interaction flow begins with selecting criteria in the Input Section, followed by reviewing the
matched indicators in the Criteria Sheet, and finally viewing the tailored results in the Output Section. This
flow ensures a streamlined and efficient process for identifying relevant indicators.
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4 Resilience Indicators for a Maa$ System

This chapter presents a systematic literature review aimed at identifying and organising resilience indicators
for MaasS systems. The goal was to provide a comprehensive overview of resilience metrics applicable to both
academic research and the industry pilots of the ACCURATE project. To support the identification and
application of these metrics, a corresponding screening tool was developed to filter and select resilience
indicators based on specific user needs in the ACCURATE project.

4.1 Introduction to Resilience

Resilience is a widely used, but rarely agreed upon, topic in the discipline of engineering. It is a key design
principle and system attribute in engineering which is only just gaining popularity. Many engineered systems
will experience some sort of failure or disruptive event during their lifetimes, but the concept of resilience is
relatively new in the engineering field compared to other fields of study. Designing with resilience in mind
and calculating different resilience metrics can help mitigate adverse effects from disrupted events. Resilience
plays a key factor in reducing the occurrence and impacts of these events (Bhamra et al., 2011; Wied et al.,
2020).

There are a wide range of definitions for resilience, encompassing many different aspects. For the purposes
of this review and future work regarding the resilience of a production facility we will define resilience as a
system’s ability to avoid, withstand, and recover from a disruptive event (Bhamra et al., 2011; Francis &
Bekera, 2014; Wied et al., 2020). These disruptive events can be many things, specific to the ACCURATE
project, these could be supply chain disruptions due to geopolitical events or a machine breakdown at a
facility. This definition was chosen because it touches on three time periods surrounding a disruptive event.
Figure 7 can be used as a reference in noting the timeline of a disruption. Figure 7shows a resilience curve,
this is the performance of a system over a duration, during which a disruption to functionality occurs. The
first period is the time before a disruption occurs, shown in green in Figure 7Figure 7. Here, the inherent
properties of a system may allow it to avoid being impacted by a disruption. The next period of interest in the
time in which a system is negatively impacted by a disruptive event, shown in orange in Figure 7. Here, the
system must be able to absorb the negative effects. This time period encompasses the decline of system
functionality up until the point where the final period, recovery begins. This final time period, shown in blue
is the period in which a system recovers from the event and achieves a new normal state of functioning
(Bhamra et al., 2011; Chatterjee et al., 2024; Wang et al., 2022).

Disruption

Performance

Operation Time

Figure 7: Resilience curve adapted from Chatterjee et al. (2024).



ACCURATE 31

The first time period, before a disruptive event happens is the time when latent properties of a system protect
it from a disruption. These properties are passive and pre-built into a system. The other two time periods are
when the system is actively working to slow, and stop a disruption from affecting the system, as well as actively
working to recover the system’s functionality. These passive, attributional and active aspects of a system are
both needed to predict and strengthen the resilience of a system (Hosseini et al., 2016).

Disruptions can affect different layers of the supply chain, resulting in a given company potentially being
pressured from multiple sides, which could be decreased customer demand or supplier shortages (Sheffi,
2017). Within WP3, the scope of disruptions are limited to those directly affecting a single manufacturing
facility where a Maa$S service is provided. Herein, the term directly affecting refers to problems or solutions
that are created by a disruption that disturb the planned operation of a manufacturing facility. Furthermore,
such effects can be examined and controlled within the said facility using in-house solutions, therefore
excluding disruptions such as decreased customer demand and supplier shortages—situations that would be
typically solved by increased marketing or making better agreements with suppliers. The bounds of a single
facility are in this instance defined as the facilities that a manufacturer or Maa$S provider has direct control
over. In other words, a company with multiple facilities all producing the same product (but at different
stages) is counted as a single facility, just separated by the limitations of physical space. Productions running
in parallel (i.e., producing the same product/component, but in multiple locations) are not as a single facility,
as they can potentially operate independently and not be directly affected by disruptions hitting one facility.

This following part of this chapter discusses results from a literature review on resilience indicators which can
be applied to a single manufacturing facility. As such, it is important to talk about the nature and function of
indicators. Indicators are tools used to demonstrate particular traits or tendencies of a system. These traits
and tendencies must be observable and measurable in some form whether it be qualitative, quantitative or
a mix of both. Indicators for resilience must be able to show partially or totally the ability of a system to
adhere to the definition of resilience previously indicated, a system’s ability to avoid, withstand, and recover
from a disruptive event. The resilience indicators that we are searching for in this paper are indicators meant
to be used by important decision makers for a production facility (Turksezer et al., 2020; Valenzuela-Venegas
et al., 2018).

4.2 Resilience Indicator Literature Review

There is a gap in understanding in current literature between resilience studies of SC level systems and single
manufacturing facilities. SC level resilience is well-defined by current resilience indicators, where some might
be relevant to single facilities, but no clear distinction has been made yet as to separating indicators based
on controllable parts of the supply chain (Sheffi, 2017). With the world changing politically, culturally and
environmentally, are efficient resilience strategies more important than ever. Manufacturing facilities are no
different from normal businesses in their need for optimal preparation and response to potential disruptions,
but they do differ in the ideal strategy for doing so. This paper will therefore explore the current state-of-the-
art on resilience metrics by classifying and categorising conventional resilience metrics which are relevant
and controllable by single facilities. To do this are three research questions (RQs) are asked:

e RQ 1: How are resilience indicators conventionally categorised?
e RQ 2: Which categorises of indicators are the most relevant to manufacturing facilities?

e RQ 3: Which are the current best applicable resilience indicators for single manufacturing facilities?
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In this review paper a systematic literature review was completed, assessing resilience indicators in the
context of Maas systems. To do this, a two-step article search approach used for gathering data. The search
engine used was Scopus?, limiting the search to English articles written after the year 2000. The research
scheme consists of a preparation phase, where the research question was determined and aligned with
industry partners, followed by a two-fold article search, where search criteria were expanded upon as existing
literature was examined.

To determine which indicators were most useful for a MaaS systems we entered in a dialogue with the three
ACCURATE pilots partners. The resulting main research questions (RQ) from those discussions were:

e RQ 1: What prior research exists assessing the resilience of single facilities and which of these
indicators can be apply to a MaaS system?

e RQ 2: What are the limitations to indicator complexity for usefulness in industry?
e RQ 3: How can we categorise resilience indicators in MAAS systems?

To answer the RQ 3 a baseline is needed for defining resilience in a manufacturing facility. Therefore, going
back to RQ 1 and RQ 2 a categorisation of conventional resilience indicators is needed to properly identify
metrics which are usable in a manufacturing facility under the scope of being manufacturing solutions. To
answer the three RQs a systematic literature review was done using Scopus. The review was thereafter split
up into multiple searching stages. These stages aimed to understand parts of the RQs continually, to direct
further searches in a way that had the highest probability of answering the RQs. The literature search was
split up in three stages, with the first stage providing a bigger scope of articles, then the second narrowing it
down and the third expanding it again to encapsulate the most possible relevant articles. During each of the
searching stages some articles were discarded based on their availability, relevance to engineering, and
relevance to resilience. Articles of interest were picked out and used to direct further stages of the literature
search. All three stages of literature search were therefore done before a complete exclusion scheme was set
up to limit the articles worked with.

The first literature search stage aimed to understand general resilience indicators related specifically to
manufacturing to answer RQ 1 and RQ 2. To do this a keyword search was set up using Scopus excluding non-
English papers. As shown in Table 2, the keywords were specifically focused on resilience or manufacturing
terms or indicator terms. A focus was also made on circularity, sustainability and life cycle assessment so as
to make the indicators more compatible with WP 3 goals.

Table 2: Initial Keyword Search.

Search Search string Articles found
category
Initial search  TITLE-ABS-KEY((resilien*) W/5 (manufacturing OR production OR 54
terms design ) AND (( circular* OR sustainab* OR "life cycle a*" ) W/2

(indicator OR metric OR measurement OR result)))

From the first literature search, one article of interest was found that defined resilience in a manufacturing
facility (M. El-Halwagi et al., 2020). This definition of 12 categories of resilience of an efficient manufacturing

L https://www.scopus.com/home.uri
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facility was used to direct the second literature search, which became a 12-fold search with keywords relating
specifically to each of the 12 categories of resilience, as can be seen in Table 3. The second literature search
resulted in a total of 76 articles being found, with some of them being duplicates. There were categories such
as reconfigurability, recoverability, modularity and reliability that were much more present than others. The
significant difference in available literature across categories suggested that some of the 12 different indicator
categories were less relevant to the RQs.

Table 3: Secondary Keyword Search.

Search category Search string Articles
found
T EEV NG ESEGW TITLE-ABS-KEY("Fail-safe design™ AND "Indicator") 4
LM e AL ES CIEL A TITLE-ABS-KEY((Recovera* OR Restora*) W/10 8
Manufacturing AND "Indicator")
GG ET {4 TITLE-ABS-KEY(Redunda* W/10 Manufacturing AND 3
"Indicator")
) i -0 1AM TITLE-ABS-KEY(Reconfigur* W/10 Manufacturing AND 8
Indicator AND quantita®)
[V [T BT a7V [T S a7 S del N EL T i TITLE-ABS-KEY((Modular* OR Mobility OR Distribut*) 18
W/10 Manufacturing AND Indicator AND quantita*)
HIUNIA TITLE-ABS-KEY(Flexibility W/10 Manufacturing AND 8
Indicator AND quantita*)
(o) (ol |IETIIA"A TITLE-ABS-KEY(Controllability W/10 Manufacturing AND 6
Indicator)
CEIEIAYA TITLE-ABS-KEY(Reliability W/10 Manufacturing AND 15
Indicator AND quantita*)
CETG LRI [1a TITLE-ABS-KEY(Repurpos* W/10 Manufacturing AND 1
Indicator)
CETLCAA TITLE-ABS-KEY(Rapidity W/10 Manufacturing AND 2
Indicator)
COI IS TITLE-ABS-KEY(Robustness W/10 Manufacturing AND 1
Indicator AND quantita*)
CES U] T TITLE-ABS-KEY(Resourceful®* AND Manufacturing AND 2
Indicator)

The third literature search was a more general search without specific categories of resilience indicators, as
seen in Table 4. Here the focus was kept on a single facility, but the search criteria on sustainability, circularity
and life cycle assessment was removed as it severely limited the number of articles.

Table 4: Third Keyword Search.

Articles
found

Search Search string

category
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General TITLE-ABS-KEY(( "resilien* metric" OR "resilienc* assessment" OR "resilienc* 164
resilience & indicator" ) AND (" manufact* " OR " facility " OR " production " OR " factory
manufacturing " OR "plant" )) AND ( LIMIT-TO ( SUBJAREA,"ENGI" ) OR LIMITTO (

SUBJAREA,"DECI" ) OR LIMIT-TO ( SUBJAREA,"ENER" ) ) AND ( LIMIT-TO (

DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( LANGUAGE,"English" ) )

With the reduced focused on sustainability was a total of 164 articles found, with some being duplicates of
previous searches. Additional articles which were articles not found in the literature search were added by.
The overall literature search resulted in a total of 259 articles, excluding duplicates.

Given the large number of retrieved articles, we performed two filtering rounds to narrow the corpus to
articles relevant to the RWs. The first filtering round excluded articles that were not relevant to resilience of
manufacturing systems. This was determined based on the title, abstracts, and conclusions section of the
article. The relevance to resilience criteria was chosen based on RQ 1 and to keep within the scope of the
ACCURATE project. The second filtering round excluded articles that did not correspond to research applicable
to a single facility or contained indicators deemed to be difficult to reproduce. The criteria on applicability to
a single facility (MaaS node) was defined based on the scope of WP 3. The exclusion criteria on reproducibility
was used as several articles contained indicators which were hard to reuse in another context, or were hard
to test be used in a practical context by decision makers in manufacturing facilities. After the two filtering
step, the corpus narrows down to a total of 32 articles. These articles were fully read through, and if they had
indicators of interest, they were they logged and classified into either the main category Preventative or
Active/Reactive. Under these primary categories, the indicators were also classified into one or more of of
several subcategories

Under the category ‘Preventative’ the sub-categories included Modularity, Redundancy, Robustness &
Reliability. The modularity subcategory exemplifies a manufacturing facility built in such a way that sections
can be easily replaced, moved or reused elsewhere. The redundancy subcategory highlights facilities where
parts of the facility are functional even if other parts fail under a disruption. The robustness subcategory
corresponds to how well a facility can withstand changes from its ideal state. The reliability subcategory refers
to how long a facility can be expected operate in its ideal state.

Under the category ‘“Active/Reactive’ the sub-categories included Reconfigurability, Absorption,
Recovery/Rapidity & Repurposability/Flexibility. The reconfigurability subcategory refers to the degree of
changeability after a disruption has happened. The absorption subcategory corresponds to the magnitude of
‘stress’ a manufacturing facility can withstand before reaching a failure state. The recovery/rapidity
subcategory combines the terms of recovery and rapidity from the previous 12 resilience categories to
describe how the facility recovers from a disruption and how fast the recovery occurs. The
repurposability/flexibility subcategory combines two categories from the 12 resilience categories, which
focus on the ability to be used for other tasks after a disruption has happened, which are not necessarily
related to the existing production.

Resilience indicators from the literature search were also classified based on their:

e evaluation method, which included method, equation, survey, and simulation.

e evaluation type, which included quantitative, qualitative and hybrid.

e external data requirements (by source), which included downstream, upstream or no external data.
e \Validation type; whether the indicators were validated using a hypothetical or real case study.
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4.3 Literature Review Key Findings

As described in the previous section, all indicators found in the evaluated literature were categorised based
on the aspect of resilience they covered, evaluation methods used, evaluation type, data sources necessary
and type of validation case used. A total of 86 resilience indicators were identified by reviewing the articles,
and are listed in Table 5, Resilience Indicators List
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Table 5: Resilience Indicators List.

.. Resilience Evaluation
Description Data Source

Validation Case

Human Intensity (Stocker et al.,

Category Method
A ratio describing how many process paths in a facility that

2022) requires human input. This can describe the degree of Robustness Equation Upstream Real
automatization.
Machine Intensity (Stocker et al., A rat.io describ.ing how many .process.paths inla facility that .
2022) requires machines for execution. A higher ratio can mean Robustness Equation Upstream Real
increased machine-related vulnerabilities.
Model Redund Stocker et A ratio describing h fth ths h i
odel Redundancy (Stocker e ratio describing how many of the resource paths have Redundancy Equation Upstream Real
al., 2022) redundant resources for replacements.
R Redund D A ratio f i ingl th and seei hat i
esource Redundancy Degree ratio focusing on a smge r(?source path and seeing wha Redundancy Equation Upstream Real
(Stocker et al., 2022) degree of redundancy it has in resource replacements.
. This metric shows the relative resource redundancy of a
Resource Redundancy Intensity . o . .
process path. A higher value indicates that the process is Redundancy Equation Upstream Real
(Stocker et al., 2022) -
redundant and resilient.
The net resilience index is a framework for doing linear .
. . e . - - . Equation Upstream and
Composite Net Resilience Index optimization of multiple resilience indices in energy systems Every category
. o . and Downstream Real
(Yazdanie, 2023) (But can be used generally as long as the sub indices are except absorption Simulation
qualitative and linear).
. . This is not a single indicator but three different methods on
Decision Making Framework for . . . . Upstream and
. . how to reconfigure a given setup to make it more resilient , - Expert .
Reconfiguration (M. Mabkhot et s e .. Reconfigurability . Downstream Hypothetical
al,, 2020) based on quantitative measurements such as utilization, wait Evaluation
N time and module state.
This index is used to evaluate the cost, time, and effort
. . . - . Upstream and
Reconfiguration Smoothness required for reconfiguring a production line. It Reconfizurabilit Equation Downstream Real
Factor (Yang et al., 2022) takes into account both the reconfiguration smoothness and 8 ¥ q
the feasibility of the project
Reconfiguration Productivity This index is used to evaluate the production capacity and ) - . Upstream and
s L R fi bilit Equati Real
(Yang et al., 2022) scalability of a production line. econhgurabriity quation Downstream ed
Lifecycle Cost (Yang et al., 2022) This index is used for evaluating the facility investment and Robustness & Equation Upstream Real

operating cost compared to the investment budget Reconfigurability
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Space Efficiency (Yang et al.,

An index used to assess how efficiently a space is used based

2022) open the area of the line compared to the constrained space  Reconfigurability Equation Upstream Real
where the manufacturing line can be configured.
. . A single value calculated from the previous four indices to Upstream and
Integrated Reconfiguration (Yang . . . . - . - .
etal, 2022) give one combined estimate for the reconfigurability Reconfigurability Equation Downstream Real
v resilience of a factory.
Customization is a metric determining the flexibility of
Customization (Kombaya Touckia, produc.lng dlffe.re.th types of products c.je.p.endlng on the Reconﬁgurabllft.y Equation Upstream and
operations flexibility, the products flexibility and the product & Repurposability/ and Downstream Real
2023) . ) L L . . . I . .
point of differentiation. This indicator is used in a combined Flexibility Simulation
simulation.
Adaptability ensures the convertibility of the system between
products by acting on the functionality as well as the Robustness & Equation
Adaptability (Kombaya Touckia, production capabilities of the system. The adaptability Reconfigurability & 9
. . o . . - and Upstream Real
2023) measure is achieved by adjusting the production system in Repurposability / . .
. . . , e Simulation
terms of functionality and by changing the production rates. Flexibility
This indicator is used in a combined simulation.
Modularity (Kombaya Touckia, I\/.Io_dularlty corresponds to the ability of the system to bg Modularity & Equation
divided into subunits and to integrate new elements. This . s and Upstream Real
2023) o . . . - . Reconfigurability . .
indicator is used in a combined simulation. Simulation
Modulari
.. Integratebility corresponds to the ability to include new odu :?mty &. . Equation
Integrateability (Kombaya . . ; . Reconfigurability &
. components on the line using adapted interfaces. This . and Upstream Real
Touckia, 2023) . . . . . . Repurposability / . .
indicator is used in a combined simulation. o Simulation
Flexibility
Diagnosability (Kombaya Touckia, Dlagnos‘nc capacity corresponds.to the speed c.>f detection of  Reliability & Equation
2023) a failure on the system or a quality defect and its root cause. ~ Recovery / and Upstream Real
This indicator is used in a combined simulation. Rapidity Simulation
Mission reliability describes the amount of rework needed in ) -
Mission Reliability (Dai et al a reconfigurable system to make it run as a new process. It is Reconfigurability
¥ N g ¥ P ' & Repurposability / Equation Upstream Hypothetical

2014)

based a on simple logistic function to measure the expected
reworking time.

Flexibility
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Overall Equipment Effectiveness

It merges information of equipment usage, process yield and

Repurposability

Upstream and

lity like the original OEE tincl Flexibilit Equati N/A
Flex (Ginste et al,, 2022) prom.:Iu.c.t quality like the orlgl.rfa 0 : mea.sure but includes / Flexibility guation Downstream /
flexibility measured by mobility, uniformity and range.
o . . The condition indicator measures when a condition-based
Condition Indicator (Hoseyni & ) . N .
. maintenance threshold has been reached a maintenance Reliability Equation Upstream Real
Cordiner, 2024) . .
should be done for a single machine
An indicator applied to time series and frequency histograms
, . . s . Recovery / . .
Negentropy (Duran et al., 2023) of disruptions, used to measure how resilient a response is Rapidit Equation Downstream Hypothetical
based on tendencies in a normal system availability graph picity
. . . , I Equation
Response Time (Wang et al., The time between. a disruption and the beginning of Robustness and Downstream Real
2022) performance decline. . .
Simulation
. . . . - Equation
Disruption Time (Wang et al., The amount of time between the beginning of performance .
. L Absorption and Downstream Real
2022) decline and the beginning of recovery. . .
Simulation
e . . Equation
Rapidit the D tion Ph . e . . .
apiaity In the DISTUPTION FRAse A index that quantifies how quickly the system declines. Absorption and Downstream Real
(Wang et al., 2022) . .
Simulation
Equation
Robustness (Wang et al., 2022) An index that quantifies the lowest system performance. Absorption and Downstream Real
Simulation
. L . Equation
Recovery Time (Wang et al., The time it takes a system to recover from the lowest point of Recovery /
- and Downstream Real
2022) performance to a new steady state. Rapidity . .
Simulation
e . e . Equation
Rapidity in the Recovery Phase An index that quantifies how quickly a systems performance Recovery /
(Wang et al., 2022) increases during the recovery phase Rapidit and Downstream Real
8 N 8 VP picity Simulation
. . . . Equation
Recoverability (Wang et al., The size between performance achieved by the system in the  Recovery / and Downstream Real
2022) new stable phase and the initial phase. Rapidity

Simulation
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Loss of Performance (Wang et al Equation
2022) & "’ Total lost performance during a disruption and recovery. Absorption and Downstream Real
Simulation
Time Averaged Loss of Equation
Performance (Wang et al., 2022) An average loss of performance per time step. Absorption a.nd . Downstream Real
Simulation
Equation
Probability of Failure (Lounis & . . - . and
McAllister, 2016) An index that quantifies the probability of failure of a system.  Robustness Expert N/A Real
Evaluation
Probability of Loss (Lounis & An index that quantifies the probability of loss in a system Equation
. Y g P ¥ ¥ ' Absorption and N/A Hypothetical
McAllister, 2016) . .
Simulation
Functional Service Loss Matrix The total functional service loss due to Absorption Eg:a‘uon N/A Hvoothetical
(Moslehi & Reddy, 2018) a disruption. P . . vP
Simulation
. . Equation
Imposed Cost Matrix (Moslehi & Cost imposed on the system due to a failure mode. Robustness and N/A Hypothetical
Reddy, 2018) . .
Simulation
- . . . . . Equation
Resilience Index (Moslehi & The difference between maximum imposed cost possible and . .
. o . . Absorption and N/A Hypothetical
Reddy, 2018) current imposed cost, divided by the maximum imposed cost. . .
Simulation
Fraction of Simulations that Probability that a design has resilient operations (there is a Equation
result in Resilience Operation failure, but it still operates at a reduced Absorption and N/A Hypothetical
(Matelli & Goebel, 2018) standard). Simulation
- . . . . . . . Equation
Resilient Operation Time (Matelli A weighted average of the operating time of all simulations Absorption and N/A Hypothetical
& Goebel, 2018) were a component failed. . .
Simulation
Time until Failure (Matelli & Average total operating time for all simulations that result in Equation
g P & Robustness and N/A Hypothetical

Goebel, 2018)

failure.

Simulation
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Fractions of Simulations that . . - . Equation
A that tifies th I f t
result in Failed Operations fa?lil:dex at quantifies the probability of a system design Robustness and N/A Hypothetical
(Matelli & Goebel, 2018) & Simulation
. - . . . . . Equation
Normalized Resilience Index A weighted average of all simulation operating time normal Robustness & and N/A Hvbothetical
(Matelli & Goebel, 2018) or failed normalized by time. Absorption . . vP
Simulation
. . . Equation
Resilience (Bhusal et al., 2020) The rfmo k?etween recovered functionality to actual Recovery/Rapidity  and N/A N/A
functionality. . .
Simulation
. - . Equation
Daily Reliability Level (Ba-Alawi Probability of failure of a component on a daily level. Reliability and N/A Real
et al., 2020) . .
Simulation
Equation
FTA Probability of Failure (Ba- - . . Robustness & and
Alawi et al., 2020) Probability of failure based on a fault tree analysis. Reliability Expert N/A Real
Evaluation
Equation Upstream
Supplier Delivery Rate (Sambowo The percentage of orders delivered on or before the due date L d
. . . Reliability and N/A
& Hidayatno, 2021) for a certain supplier.
Survey
. . Equation
O.n Time Delivery (Sambowo & The percentage of orders delivered on or before the due date Reliability and Upstream N/A
Hidayatno, 2021)
Survey
. . . An index that quantifies the time between receiving an order Equation
Supplier Delivery Lead Time and deliverin Reliabilit and Upstream N/A
(Sambowo & Hidayatno, 2021) & y P
Survey
Manufacturing Lead Time Equation
(sambowo & Hidayatno, 2021) The complete time it takes to manufacture a product Reliability and N/A N/A
Survey
Capacity Utilization (Sambowo &  An index that quantifies how much of the total capacity is Equation
pactty 9 pacity Redundancy and N/A N/A

Hidayatno, 2021)

currently being used.

Survey
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. Equation
Stock Level (Sambowo & The number of goods that are able to be stored and delivered au
. . o Redundancy and N/A N/A
Hidayatno, 2021) in a storage facility.
Survey
Reserve Funds (Sambowo & An index that quantifies how many reserved resources an
. . R N/A N/A
Hidayatno, 2021) organization has. edundancy survey / /
Empl Ani that tifies th f | king at
mp oyees (Sambowo & n mdex. a. guantifies the number of employees working a Redundancy Survey N/A N/A
Hidayatno, 2021) an organization.
, Equation
Robust L Juan-G t . . . .
alo zugzrlt;:ss 0ss (Juan-Garcia e The maximum value of performance lost during a time series. Robustness and N/A N/A
N Simulation
, . . . . R Equati
Speed to Recovery (Juan-Garcia Time between detection of a failure and returning to eC(.)v.ery/ quation
. Rapidity and N/A N/A
et al., 2021) acceptable levels of operation. . .
Simulation
Global Resilience Index (Juan- A corr.1pou.nd m.etrlc conswhng of the. |n.tegral of t.he . Reconﬁgurabllft.y Equation
, functionality minus the compliance limit of functionality & Repurposability / and N/A Real
Garcia et al., 2021) ) L L . .
dived by the speed to recovery for normalization. Flexibility Simulation
. . Th ili f a scheduli tem takes the ti Upst
Resilience of a Scheduling System (.a.re5| \ence of a st ? wiing sys ?m axes the ime Recovery / . . pstream .
efficiency of a scheduling completion and a - Simulation Hypothetical
(Feng et al., 2022) . . Rapidity
correction factor based on available resources.
This indicator defines the best case and an actual case time Equation
Time Series System Cyber series metric and evaluates the differences using the area Robustness & g
e . - . . and Downstream Real
Resilience(Simone et al., 2023) from their integrals to define how close the system performs  Absorption Simulation
to the resilient strategy.
. This indicator measures the performance during a disruption
System Absorption Performance } . . . . .
and describes how much of a disruption the system absorbs Absorption Simulation Downstream Real
(Pawar et al., 2022) i o . .
while continuing safe and low failure rate operation.
. Adaption is defined as int tion i t t ti ) .
System Adaptation Performance aption is dehined as in erve.n on in a system au .oma cor Reconfigurability . .
manual and the system adaption performance defines how . Simulation Downstream Real
(Pawar et al., 2022) . . ) & Absorption
the systems reliability changes during an adaption phase.
Ab tion &
System Recovery Performance The recovery performance measures the systems need for Rezg\r/Fe)r;;] Simulation Downstream Real

(Pawar et al., 2022)

maintenance and how close it is to normal operations.

Rapidity
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I - , This indicator defines resilience by the availability of the Equation
Availability Resilience (Duran et . ) . . -
al,, 2021) machine through different stages of the production and gives  Reliability and Downstream Real
N the probability of a machine not working at different times. Simulation
- . The resilience index takes account of the repair time and a Equation
Resilience Index (Singhal et al., .“ index . ! G pal Recovery / au Upstream and .
step wise recovery function to describe time - and Hypothetical
2022) . Rapidity . . Downstream
until full recovery. Simulation
- This index requires a failure mode analysis and then the index
Robustness Resilience Index (Wu . . . .
is calculated based on the probability of failure and Robustness Simulation Upstream Real
et al., 2024) . .
importance of each failure mode.
The index requires a recovery model and a system Downstream
Recovery Resilience Index (Wu et performance simulation of the recovery process and then the Recovery / . .
. , . . . . - Simulation Real
al., 2024) index is calculated as the difference in area by a time series Rapidity
integral of the best case vs recovery case scenario.
Function Performance Index (Wu T.his ir.1dex requires perforfr?ance curves .of different recovery Recovery / . .
situations and the probability of those situations to calculate - Simulation Downstream Real
et al., 2024) Rapidity
the expected performance.
This indicator defines resilience as a metric dependent on a .
- . . . . . Absorption &
System Resilience (Tong & network of machines which can all experience disruptions . .
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Results show that the most common preventive indicator subcategory was robustness and the least common
was modularity. We found no indicators specifically evaluating modularity, but some multi-issue indicators
still considered this category. The most common active/reactive indicator was absorption, with
repurposability/flexibility being the least common. We found an almost even distribution of indicators across
the main categories of preventative and active/reactive.

Distribution of indicator categories

Modularity; 0
Multi category all; 8 LAty Redundancy; 7

Multi category

active/reactive; 7 Robustness; 9

Multi category
preventative; 1
;_

D———

Repurposability/Flexi

bility; 1 Reliability; 7

Recovery/Rapidity;

10
Reconfigurability; 4
Absaorption; 11
® Modularity Redundancy Robustness
m Reliability Reconfigurability Absorption
m Recovery/Rapidity m Repurposability/Flexibility m Multi category preventative

= Multi category active/reactive m Multi category all

Figure 8: Distribution of Resilience Indicator Categories.

The different distributions of the indicators in the previously mentioned categories, are shown in a pie chart
form in Figure 8. Each colour indicates the aspect of resilience which the indicators fall into, with a specific
colour scheme showing if the subcategories are reactive or preventative. Multiple indicators were also found,
which were a combination of different categories. What can be seen from the multiple category cases is that
active/reactive indicators are often grouped together, while preventative multicategory indicators also had
active/reactive aspects.

It is important to discuss why certain resilience categories were not heavily utilised, despite them being
initially included in the classification criteria. For all indicators, the category modularity was never found to
be a singular indicator category. The subcategory repurposability/flexibility was represented as a singular
category in only one indicator. The modularity category was in a multicategory three times, and the
repurposability/flexibility was in a multicategory seven times. For modularity, this small number of indicators
seem to be because making production lines modular becomes a priority when a disruption has occurred,
therefore becoming a reconfiguration rather than a baseline modular system. This decreased focus on
modularity in the preventative stage might make production lines less prepared for reconfiguration, even if
the manufacturing facility performs well in reconfigurability indicators. The gap of sufficient indicators in the
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modularity category leads us to conclude that this may be a more difficult system attribute to measure,
especially if it is not a focus in the initial design of a system.

A hypothesised reason for repurposability/flexibility only being present once as the sole indicator category
but seven times as a multicategory indicator is because the found indicators do not clearly distinct between
reconfiguration of a setup compared to repurposing a setup. This unclear distinction can therefore mean that
two separate categories are not relevant for future groupings of those indicators in manufacturing. It may
also be the case that repurposability and flexibility are an indicator category that should be focused on in the
preventative stage, where a design can be made with the ability to be repurposed in mind. Additionally,
flexibility being a broad topic could possibly benefit from having greater precision in its definition. The reason
for there being few sole repurposability/flexibility indicators is also the reason why there are an increased
amount of multicategories for active/reactive indicators.

It can be seen in Figure 8, that a clear distinction exists when categorising preventative indicators, but the
active/reactive categories are more spread across the different indicators. An issue with indicators that rely
on many categories is that they are often complicated to calculate, but more importantly complicated to
understand. A truly useful resilience indicator is one that can be acted upon to improve a system; when a
conglomeration of resilience attributes are weighted into one indicator it is difficult to find the true meaning
in the number that is presented. The review also shows that complexity of calculating different resilience
indicators can significantly vary. Indicators that are solely in the category of absorption are some of the
simpler indicators, and serve as a base for other indicators. Such indicators include, Probability of Loss and
Probability of Failure, both of which are important factors on their own, but also often serve as a contributory
term in more complex simulation-based indicators which aim to minimise losses and failures in a facility. The
fact that complex indicators are build on top of simpler indicators, provides an implementation strategy for
manufacturing decision makers in gathering data for simple indicators first and thereafter using that
information in the more complex models.

The indicators based on probability of loss often look at four different types of losses: time losses, human
losses, machine losses, and economic losses. The reliability category mainly focuses on time loss and economic
loss with indicators such as Supplier Delivery Rate, On-Time Delivery and Manufacturing Lead Time, which
aim to increase the reliability of production and reduce the potential time spent, and therefore the economic
loss. The robustness category mainly focuses on machine loss, aiming to make the facility as robust as possible
to different kinds of disruptions. Here, indicators include Machine Intensity and Time series system cyber
resilience, and Human Intensity. Human loss indicators are scarce, and were therefore not clearly in one main
category of indicators. Finally, the active/reactive indicators didn’t seem to be as clearly distinct in the across
different types of losses.
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Distribution of method of evaluation
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Figure 9: Distribution of the Method of Evaluation for the Surveyed Resilience Indicators.

The distribution of the method of evaluation for the surveyed resilience indicators can be seen in Figure 9.
The methods of evaluation include equations, expert opinions, surveys, and simulation models. Please note
that in situations where indicators used two or more methods to be calculated, these are listed as their own
category. The most prevalent methods of evaluation are equations and simulation models (individually and
also in combination). This is expected since all of the surveyed resilience indicators were quantitative; no
qualitative or hybrid indicators present in the filtered list of indicators as the aim of WP 3 is to identify
indicators that can be subsequently linked to the production-level DTs developed in ACCURATE.

There is an even distribution of preventative and active/reactive indicators based on equations or simulation
models, suggesting that there isn’t a clear difference in complexity of indicators when looking across these
main categories. The indicators using only equations as the method of evaluation often are simpler indicators,
which can be calculated with few terms. Indicators based on simulation models often require minimising for
one of the different losses as described earlier. Indicators based on simulation models are mainly split into
two groups, those that focus on minimisation of loss and those using simulation as a means of testing the
theory the indicator is based on.

Comparing equation and simulation-based resilience indicators, it is possible to establish an ease-of-
implementation hierarchy for the surveyed indicators. Equation-based indicators are the simplest to use,
followed by mixed methods indicators that use equations and simulation models that are decoupled from
each other. Indicator based on simulation models alone are not easy-to-implement with complexity being one
of their defining features. Survey-based resilience indicators can be easy to implement as they typically
require querying workers of the given facility questions. However, they are harder to implement when
external data is required, either from upstream or downstream stakeholders. Lastly, resilience indicators
based on expert evaluations can be easy to use if the access to relevant experts is available, but can potentially
become expensive to implement as external experts and consultants may need to be hired.
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Distribution of data source
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Figure 10: Distribution of External Data Source for the Surveyed Resilience Indicators.

The distribution of the external data requirements (by data source), and validation type can be seen in Figure
10 and in Figure 11lrespectively. As shown in Figure 10, we found an almost even distribution of indicators
needing upstream data, downstream data, or no external data. There were also some cases where both
upstream data and downstream data were needed to compute the indicators, but such cases were rare.

Resilience indicators requiring no external data sources potentially require lesser implementation effort,
when compared to the ones requiring either upstream or downstream data. Combining results shown in
Figure 10 with those in Figure 8 reveals that preventative indicators most often needs upstream information,
as they plan against future disruptions by strengthening the production’s ability to withstand stress. This is
seen in indicators such as Supplier Delivery Rate and On-Time Delivery where information from suppliers are
needed to prepare the manufacturing floor most efficiently to variance in delivery rate or time of delivery.
The opposite is true for active/reactive indicators, which most often require downstream data, as the
simulations either need to know the response from customers or the people which the manufacturing facility
caters to. This is the case because resilience in these scenarios are often defined by the ability to meet
customer demand in a disruption. Therefore, without an understanding of changing customer demand during
a disruption is it not possible to calculate the extent of the loss. Resilience indicator categories that require
the least external information are reliability and absorption indicators, because these often can be calculated
from the failure rate of the equipment within the facility, wherein limits for maximum output or variance in
delivery can be estimated.

Looking at Figure 11, we can see that the validation method for most indicators was done using real case
studies. Roughly two-thirds of the indicators mentioned were validated using real case studies, with the usage
of hypothetical or no case studies having been comparable to each other. A potential reason is that most
surveyed resilience indicators were established in relation to specific industries. The few hypothetical case
studies were found in complex theoretical simulation-based resilience indicators and indicators which require
very specific types of disruptions (e.g., one-off large-scale disasters). Indicators that were not validated using
case studies were often simpler absorption-based indicators which serve as the basis for other indicators.
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Distribution of validation method
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Figure 11: Distribution of Validation Method for the Surveyed Resilience Indicators.

4.4 Resilience Indicator Selector Tool

Results from the literature review were implemented in the form of an easy-to-use screening tool usable by
industry and academia, to explore different resilience indicators. As discussed earlier, the resilience indicators
were sorted into 12 categories (M. M. El-Halwagi et al., 2020). Additionally, the tool also categories the
resilience indicators based on their relevance to sustainability and circularity assessment. Thes screening tool
allows users to filter the indicators by their resilience category, the calculation method used for obtaining the
indicators (i.e. analytical, empirical or simulation based), whether the indicators are quantitative or qualitative
and if the indicator is preventive or detection based. The selection tool was implemented using Microsoft
Excel for ease-of-access with an accompanying Read Me page (see Figure 12) containing information on how
the screening tool can be used.

- Funded by
the European Union Resilience Indicators /v

Screening resilience indicators for your application
é%@ACCU RQATE 9 Y PP AARHUS UNIVERSITY

This tool aims to guide designers, engineers, researchers, managers, administrators, decision-makers, policy-makers, efc., in
identifying and selecting the most suitable(s) tool(s) /indicator(s) to assess, improve and/or monitor their resilience practices

according to their specific needs and requirements.

Resilience is @ measure of how well a company or system can widthstand disruptions. Preparing for and detecting
disruptions can be a vital component for companies chances of survival in turbulent times. This tool aim to provide the
user with access to different resilience indicators which measure a systems current or past ability to widthstand a
disruption and the future likelihood of disruptions. For an indicator to be considered does it have to provide a
quantitative measurement or a qualitative framework of thought for dealing with resilience. The tool is split in inputs,
output and taxonomy. With inputs allowing the user to sort a list of indicators and outputs being that assortment. The

taxonomy holds all indicators and can be added to if the user has access to aditional indicators.

Figure 12: ‘Read Me’ Page of the ACCURATE Resilience Indicator Screening Tool.
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An Input sheet (Figure 13) allows users to screen the resilience indicators by the aforementioned categories
and indicator attributes. Accompanying the sorting buttons are in depth descriptions of each category to
improve the understanding for the user for finding the best fitting indicator.

Resilience Indicators leSteplEiltering L )
Caleulate . " e Description of categories
Screening tool for resilience indicators Selection Criteria

111111111

- Instruction -
1/ Fill in the yellow cells that can be scrolled, as  filter fo identify the most suitable resilience indicator(s) fo your needs
2/ Click on the logo above fo launch the search and have access to your personalised inventory of resilience tools/indicators.

L

I Controllability in disaster-resilient design focuses on steering system behavior from inifial fo final states using
Resilience indicator type

Al admissible controls. It addresses dynamic issues and trajectories, crucial for managing system responses to
The type of the indicator refers to the general category it focuses on ! I ging sy: P!

different disaster scenarit

DLV

Indicator model

Al
What type of model is used to calculate the indicator

ULV

Indicator goal

To determine if the indicator is to be used for prevetion/easing the effect of a disruption or if it is Al
used to detect the propability of a di t i
LIV
Method
To determine if the calculated indicator should be based on qualitative expert opinions or a All

quantitative measure

Figure 13: Input Sheet in the ACCURATE Resilience Indicator Screening Tool.

After a selection has been made the user is provided with meta data about the indicators satisfying the
filtering criteria, including the name of corresponding research article, author names, access link to the
article, application and scope and type of assessment (see Figure 13: Input Sheet in the ACCURATE Resilience
Indicator Screening Tool.). The screening tool does not directly provide formulas or information on how to
calculate each indicator; it primarily serves as a tool for finding relevant resilience indicators and points users
to an appropriate source.

Indicator model Indicator goal
Resilience Indicators Description-Working Principles
Analytical | Empirical Prevention Detection Qualitative | Quantitative
Product Recyclability In the procedure of product develog - - X X X
Pollution Production Capability In the manufacturing process, suppli X X X
Environmental Management Suppliers should implement a set of X X X
Safety and health Supplieres should have the potentia X X X
Eco-design and green image In the procedure of product design, X X X
Production facilities It is @ maximum conceivable output X X X
Trustworthiness The Reliability indicator measures fl X X X -
Supply chain density Supply chain density measures the ¢ X X - X

Figure 14 Resilience Screening Tool Output Example

The above figure shows an example of the outputs of the resilience indicator screening tool. For the given
criteria, the tool will output a list of applicable indicators, a description of the indicator, the type of model
used to assess the indicator, the method of assessing the indicator and the goal of the indicator.
Additionally, the source of the indicator is given in the output sheet, it is just not shown above for the sake
of space.
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5 Sustainability Indicators for a MaaS System

This chapter describes the methodology, indicator selection criteria, and recommendations for evaluating the
sustainability performance of MaaS$ systems in the ACCURATE project. The chapter discusses the assessment
methodology and relevance of both environmental sustainability indicators as well as social sustainability
indicators to the ACCURATE project.

5.1 Environmental Sustainability Indicators

5.1.1 Environmental Life Cycle Assessment

Environmental Life Cycle Assessment (eLCA) has emerged as one of the most widely used tools for quantifying
the lifecycle environmental impacts of products and production systems. As shown in Figure 15, according to
the ISO 14040 standard (Standardization, 2006), eLCAs consist of four stages.

[ Goal and Scope Definition } ) ]

Interpretation

[ Inventory Analysis }

[ Impact Assessment ]

Figure 15: Stages in an environmental life cycle assessment according to the ISO14040 standard.

1. Defining the goal and scope of the study: In this stage, practitioners set the boundaries of the system,
specify the assumption to be used, and set the functional unit of the product or process to be studied.

2. Conducting the Life Cycle Inventory (LCl) data collection: During this stage, all input and output flows
linked to each life cycle stage of the product or process are collected. Such flows include inputs
regarding resources and materials and outputs in emissions, waste and downstream material.

3. Assessing the life cycle impact (LCIA): This stage analyses LCl data and links them to the environmental
impact categories and indicators.

4. |Interpretation of the results: During this stage, practitioners interpret the results according to the
defined goal and scope and address all the uncertainties and accuracy of the results.

It should be noted that these stages should be applied in an iterative manner, and the assessment
methodology should be refined based on the obtained results and their interpretation. Several commercial
software are available for conducting eLCAs, with notable examples including GaBi?, SimaPro®, and OpenLCA*.
This report does not aim to provide an in-depth introduction to eLCAs; it primarily discusses the generation
of metrics for assessing the sustainability performance of Maa$S systems based on eLCAs. Readers interested
in obtaining an in-depth understanding of the various stages in eLCAs are directed to the LCA compendium
book series (LCA Compendium - The Complete World of Life Cycle Assessment, 2014-2023).

2 www.sphera.com
3 www.simapro.com
4 www.openlca.org
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5.1.2 Manufacturing Sustainability Assessment

When quantifying the environmental impacts of manufacturing systems and identifying potential
improvements that can be made to system from an environmental sustainability point of view, eLCAs can be
used to establish both qualitative and quantitative measures of sustainability performance. The process of
planning activities and/or actions that improve the sustainability of manufacturing processes has been
defined as manufacturing sustainability assessment (MSA) (Ramanujan et al., 2022). From an operational
perspective, Lee and Lee (2014) derive an operational definition for MSA by defining manufacturing
sustainability as a “measure of manufacturing performance metrics of product design, process plan, and
production system with respect to the environment, economy, and society, when executing a process plan for
a product design in a given production system.” Extending this definition, the authors define MSA as a process
“determine a value of the manufacturing sustainability metric, which is a balanced performance of product
design, process plan, and production system with respect to environmental, economic, and social aspects of
sustainability”.

The primary goal of performing MSA in the ACCURATE project is to identify,

1. the magnitude of change in environmental sustainability performance of production systems
(operating in Maa$ systems) under potential disruptions and,

2. the effect remedial actions (e.g., changing production planning, reconfiguring production lines) on
the environmental sustainability performance of production processes within Maa$ systems.

For this, DT models that can model functional performance of the production systems (e.g., WIP, lead time,
production rates) need to be extended to also quantify their environmental sustainability performance. With
this goal, only quantitative environmental sustainability metrics are investigated in the the ACCURATE project.
Quantitative sustainability metrics in MSAs typically take the form of environmental impact indicators based
on eLCAs, and KPIs that can encode specific dimensions of environmental impacts. They are distinguished in
further detail below.

5.1.3 Quantitative sustainability metrics for manufacturing sustainability assessment

Environmental impact indicators based on eLCAs:

Results from eLCAs are expressed using environmental impact indicators that typically quantify the
environmental impact of the analysed system on one or more impact categories. Based on the LCIA method
considered, the methodology can be classified into:

1. Single issue methods: Single issue methods only address one impact category (e.g., climate change,
water scarcity) and ignore the environmental impacts of the analysed system on other impact categories.
For example, the LCIA method IPCC 2013 GWP 100a (Ometto et al., 2014) only computes potential climate
change related impacts due to the global warming potential (GWP) of green house gases emitted from
the analysed system. Single issue methods are not in compliance with ISO 14044 standard as it is not
allowed to leave out impact categories that may have a significant environmental impact.

2. Multiple issue methods: Multiple issue methods have broad (yet limited) coverage of impact categories.
For example, a multiple issue method such as ReCiPe 2016 midpoint (Huijbregts et al., 2017), can compute
multiple environmental impact indicators, including, GWP, ozone depletion potential, terrestrial
acidification potential, fine particulate matter formation, etc. Several, established multiple issues
methods such as a ReCiPe 2016 midpoint, ReCiPe 2016 endpoint, CML (baseline), USEtox, Environmental
Footprint, are incorporated in to commercial LCA software. Interested readers are referred to Table 1,
Page 7 of the openLCA documentation on LCIA methods for a comparison for a comparative analysis of
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the above methods (Acero et al., 2015). The European Commission has introduced two environmental
footprint methods, comprising the Product Environmental Footprint (PEF) and Organisation
Environmental Footprint (OEF) for harmonised assessment of environmental indicators, with the aim of
improving transparency in reporting and decision-making. The technical details of the EF methods are
laid down in the Commission Recommendation (EU) 2021/2279 (Annexes I-lI-11l-1V). Additional guidance
documents on the EF methods have been developed during the first applications of the PEF/OEF in the
pilot phase (2013-2018) and in the transition phase (2019-2022) (European Commission: Joint Research
etal., 2022).

When discussing the choice of single issue and multiple issue methods for quantifying environmental
sustainability indicators, specific attention should be given to the representativeness and the
comprehensiveness of the data that needs to be collected in the LCl stage. In terms of data collection burdens,
multiple issue methods typically require that a more comprehensive LClI model of the production system in
constructed, when compared to a single issue method. To illustrate, if the aim of performing MSA is to assess
climate change related impacts of the system using a method such as IPCC 2013 GWP 100a, the LCI model for
the production system only needs to include any direct greenhouse gas emissions as well as energy/resource
flows (e.g., electricity usage, lubricating oil, materials) whose production entails significant greenhouse gas
emissions. In several production systems, greenhouse gas emissions from electricity use outweigh other
flows, which can simplify LCI data collection. On the other hand, applying multiple issue methods typically
requires a more comprehensive analysis of energy/resource flows in the production system, as different flows
can contribute to different environmental impact categories disproportionality (Campitelli et al., 2019).

An associated consideration is the need for primary LCI data collection, so that the resulting environmental
sustainability indicators accurately characterise the analysed system. Conducting process-based elLCAs
requires collecting and quantifying LCI data of the employed processes, e.g., energy use, water and material
consumption, and process emissions (Seghetta & Goglio, 2020). Background data, e.g., from commercial LCI
databases such as ecoinvent®, is especially useful when primary data (i.e., actual data from production)
collection is challenging, or during early design stages when primary data is not available at all. On the other
hand, background data is inherently uncertain and therefore affects the accuracy of the results, which must
be taken into account during the analysis (Blok et al., 2007). That is because, in practice, there is considerable
variation between manufacturing process implementation, depending on the specific process parameters
and the used machine tools (Boettjer et al., 2021). Thus, background data does not fully account for process
variations, which can significantly impact resource consumption and emissions production. In cases where
sufficiently representative background LClI models are unavailable, primary LCI data should be collected to
increase the accuracy of the computed environmental sustainability indicators. The choice of indicators
consequently dictates primary data collection burdens from the production system. Recent research projects
have aimed to address data collection challenges through improving product and process digitalisation. The
s-X-AlIPI project aims to build artificial intelligence enabled sustainability monitoring tools for process industry
(self-X Artificial Intelligence for European Process Industry digital transformation, 2022). The RECLAIM project
(RE-manufaCturing and Refurbishment LArge Industrial equipMent, 2019) and the METAFACTURING project
(Data and METAdata for advanced digitalization of manuFACTURING industrial lines, 2022) explore the use
of Industry 4.0 technologies such as digital twins and computer vision for automated estimation of life cycle
inventory data and computation of streamlined environmental sustainability performance metrics. Even so,
the adoption of digital technologies for automated manufacturing sustainability assessment remains
challenging and is not yet widely adopted (e.g., by industrial partners in the ACCURATE project).

5 https://ecoinvent.org/database/
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Lastly, the interpretation of results based on computed environmental sustainability indicators is a significant
concern. In other words, decision-makers should be able to understand

1. the significance of the computed environmental sustainability indicator(s),

2. the implications on the manufacturing system and activities/processes that significantly contribute
to the indicators, and

3. available decision-levers in the systems to mitigate the environment impacts of the system.

This can be challenging in the case of eLCA based indicators as they present results in measurement units
not directly related to manufacturing systems, and correlations between the indicators themselves can be
hard to discern (Glisic et al., 2024).

Recent research has focused on advancing indicator selection, assessment and interpretation for advancing
eLCAs. The ORIENTING project (Operational Life Cycle Sustainability Assessment Methodology Supporting
Decisions Towards a Circular Economy, 2020) performed a critical review of LCA methodologies, with the aim
of advancing life cycle sustainability assessment (LCSA) towards the integrated assessment of environmental,
social, and economic impacts. Results from the project (Horn et al., 2021) discuss the relevant merits and
weaknesses of LCIA methodologies and recommend specific data quality requirements, e.g., for compliance
with the PEF method. To illustrate, if a process is run by a company, e.g., an original equipment manufacturer
(OEM), company-specific data on both the manufacturing activity and direct emissions is recommended. In
the case of a process run outside the company, with access to specific information, company-specific data is
preferred, but an EF compliant secondary dataset from trusted LCA data sources is also acceptable. Finally in
the case of of a process run outside the company, without access to specific information, an EF-compliant
secondary data set (in aggregated form) or a secondary data set compliant to the International Life Cycle Data
System (ILCD) should be provided. Given the challenges with primary data collection mentioned in the
previous paragraph, sourcing high-quality, process-specific inventory data can be challenging. Such challenges
are further compounded in the case of Maa$S, where portions of the manufacturing process takes place
outside the physical boundary of OEMs. Therefore, process-specific data for sustainability critical
manufacturing activities may be unavailable as they occur outside the facilities owned by an OEM.

Key-performance index based sustainability metrics: KPls have been proposed as an approach for supporting
sustainability-related decision-making in manufacturing. KPls, when appropriately formulated, can overcome
certain limitation in eLCA based indicators including, high time-and cost-burdens for computation, limited
relevance for decision-making, and interpretability. A KPI, or more broadly, an indicator, can be defined as a
parameter that provides more information on significant phenomena, relevant to the specified performance
objectives (Feng & Joung, 2010). Prior literature has identified two broad approaches for defining relevant
KPIs in sustainable (Kibira et al., 2017).

e Bottom-up approach: In this approach, metrics that are either currently in use or deemed necessary
to be measured, are to define KPIs that are a basis for continuous development. KPIs defined using
the bottom-up approach are typically directly quantified based on operational data from
manufacturing systems. Examples for such KPIs include, energy efficiency of manufacturing systems,
percentage of recycled materials used in manufacturing, waste produced in manufacturing, etc. Thus,
such KPls are typically formulated from unit process-level life cycle inventory data measurements.
Given that bottom-up KPIs are defined in close association to the manufacturing system being
analysed, they are often easier to interpret, and valuable for modelling and improving system- and
process-level sustainability performance (Smullin et al., 2016). However, a shortcoming of KPls
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defined using a bottom-up approach is that they do not necessary estimate the global performance
of the system; multiple KPls may be required for this purpose. Furthermore, such KPIs can be in
conflict with each other, requiring MCDM and trade-off analysis for improving system-scale
performance. Furthermore, KPIs defined using a bottom-up approach may not necessarily capture an
oranisations’ sustainability goals or targets.

e Top-down approach: In contrast to the bottom-up approach, in the top-down approach, the definition
of KPls in sustainable manufacturing is based on the overall sustainability goals of an organisation.
Therefore, KPIs defined using the top-down approach often measure the sustainability performance
over a collection of unit manufacturing processes (as opposed to a single process) in the dimensions
relevant to the overall organisational goals (Kibira et al., 2017) . Consequently, such indicators may
not be easy-to-interpret when the objective is to improve the performance of a specific unit process
or a process parameter. However, KPIs defined using the top-down approach are well-suited for
reporting sustainability performance of manufacturing systems, given they are defined at a system-
level, and incorporate dimensions of quantification relevant to the specific organisation.

In both the approaches discussed above, a generalised procedure for defining relevant KPls involves the
following (Garetti & Taisch, 2012; Rakar et al., 2004).

Defining the overall sustainability goals and objectives

Identifying and defining KPIs (based on the selected approach)

Shortlisting and selection of relevant KPIs

Implementing data collection systems for quantifying the defined KPIs

Implementing a monitoring plan for the KPls, ensuring continuous process improvement.

vk wnN e

In this process, it is important to consider the which dimensions of environmental sustainability are being
measured by the selected KPls, and if they are a significant source of environmental impact for the
manufacturing system being analysed. It is also important to clearly specify the boundaries of measurement
(as per the selected KPI), and if it includes all components of the process/system that affect the selected KPI.
Finally, it is important to note that in practice, the selection of relevant KPIs is often limited by the
requirements on data collection and reporting. Therefore, a critical evaluation of the challenges and benefits
of implementing and monitoring selected KPIs is often necessary.

5.1.4 Recommendations for Manufacturing Sustainability Assessment in ACCURATE

To understand the availability of data for performing LCA based manufacturing sustainability assessment
within the scope of the ACCURATE project, the following activities were conducted across all three
ACCURATE pilot partners.

e Detailed interviews were conducted with the ACCURATE pilot partners to understand the importance
of sustainability-related process performance in terms of the current manufacturing setup, as well as
extensions to a Maas system.

e A data collection template (Section 7.1) was distributed to the pilot partners to understand the
availability of primary and secondary LCl data. Follow up discussions were also conducted to
understand challenges in collecting LCI data requested in the data collection template.

e Finally, multiple discussions were conducted with WP3 meetings (Task 3.1) to understand
requirements for integrating MSA assessment into the DES-based production DT models being
developed in WP3.



ACCURATE 54

Results from these discussions revealed that,

e C(Climate change-related impacts were prioritised by the ACCURATE pilot partners

e Due to the lack of existing infrastructure for primary inventory data collection, process specific-
company data is currently unavailable. This knowledge gap should be filled through additional
measurements made on the manufacturing lines, as well as through using high-quality secondary
datasets (e.g., using commercial data providers).

e ACCURATE pilot partners did not have existing agreements with upstream/downstream suppliers
regarding sharing process-specific inventory data. Furthermore, it was suggested that it would be
challenging such information for potential MaaS providers. Consequently, high-quality secondary
datasets (e.g., commercial data providers) should be used to fill existing data gaps.

e Finally, due to the lack of complete visibility on processes, the use of streamlined indicators (not
based on LCA) for critical processes (identified by OEMs) were suggested as a means for quantifying
and monitoring sustainability performance related to material use. Such indicators include:

o Process wastes (e.g., expired components, scrap, other wastes) produced per
component/process.
o Consumption of materials (e.g., consumables, tools, etc.) per component/process.

The selection of environmental sustainability indicators for each UC is discussed in Chapter 7.

5.2 Social Life Cycle Analysis (sLCA) Indicators

5.2.1 Introduction to SLCA

Social Life Cycle Assessment (sLCA) has become an important methodology within the framework of LCA,
allowing for the evaluation of social and socio-economic impacts in the entire life cycle of products and
services, from raw material extraction to end-of-life disposal. While eLCAs primarily focus on environmental
effects such as resource use and emissions, sLCA extends the evaluation to social aspects, such as labour
conditions, community well-being, and human rights. sLCA is increasingly recognised as vital to achieving
comprehensive sustainability (Haslinger et al., 2024). sLCA adopts the so-called ‘life cycle thinking” approach.
This perspective ensures that all stages of a product’s life, such as extraction, production, distribution, use,
and disposal—are considered for their social impacts in each of these different stages. The United Nations
Environmental Protection (UNEP) guidelines on sLCA establish a more structured framework to categorise
stakeholders and assess these social impacts, focusing on groups such as workers, local communities,
consumers, and society as a whole (Andrews et al., 2009). These stakeholder groups have impacts through
different aspects of production and also consumption processes. This makes this tool important to measure
the ‘social’ footprint of businesses and organisations alike. The sSLCA methodology typically follows four main
steps (Andrews et al., 2009):

defining the goal and scope,
performing life cycle inventory analysis,
conducting an impact assessment, and
interpreting the results

PwWNPE

This process often requires both qualitative and semi-quantitative data, which often makes it difficult to
measure. While some impacts can be quantitatively measured (such as absenteeism or injury rates), others,
such as worker satisfaction and social equity, require interpretative frameworks to measure efficiently
(Haslinger et al., 2024).
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The application of sLCA to MaaS stakeholders introduces a new set of complexities. Maa$S enables companies
to lease manufacturing capacity on-demand rather than engaging in full-scale production themselves. This
also includes the lease of data and software digitally as the formal definition refers to Maa$ as a distributed
system of production in which resources (including data and software) are offered as services, allowing
manufacturers to access distributed providers to implement their manufacturing processes. Such servitisation
of manufacturing resources contributes significantly to production flexibility and responsiveness, enabling
production on demand for many product categories. Suppliers of manufacturing systems and of integration
technologies design and offer interoperable services in close partnership with manufacturing companies,
while other providers in the value chain can offer additional services. Secure, real-time data exchange
between the companies involved enables quick response times (Twin Green and Digital Transition 2024
(Horizon-CL4-2024-Twin-Transition-01), 2024).

While this model offers flexibility and scalability, it complicates the traditional approach to identifying and
engaging stakeholders in sLCA frameworks (Andrews et al., 2009). In traditional manufacturing, stakeholders
are typically easy to identify due to direct involvement in production processes. In contrast, the model in
Maas introduces layers of indirect relationships, particularly between those leasing manufacturing capacity
and users of these services. Performing sLCAs for Maa$ systems can also considered to be more complex than
similar assessment on traditional manufacturing value chains. This stems from the fact that,

e In traditional value chains, OEMs have long-term agreements and relationships with suppliers, which
eases data collection on stakeholder impacts. On the other hand, Maa$ systems are designed to be
more agile and flexible, implying that stakeholders and associated impacts significantly vary over
time.

e System boundaries are more well-defined in traditional manufacturing. For example, in the case of
in-house manufacturing, boundaries can be drawn around stakeholders that have a direct
involvement with the OEM. In the case of multi-tiered suppliers, boundaries for sLCAs are set based
on specific degree (e.g., 1%-degree suppliers, 2"%-degree suppliers, etc.) based on the visibility on the
value chain and ease of data collection. However, in the case of MaaS, where stakeholders and
beneficiaries can vary (temporally and geographically), it is more challenging to define consistent
system boundaries, identifying stakeholders in manufacturing SCs.

Regulatory developments, e.g., the Corporate Sustainability Reporting Directive (The European Parliament,
2022), Ecodesign for Sustainable Products Regulation (The European Parliament, 2024) can potentially ease
data collection burdens for sLCAs by mandating reporting on specific social impacts on stakeholders. However,
to develop a realistic SLCA framework for Maa$S systems in the current environment, it becomes essential to
develop a more focused perspective, i.e., assessing the social sustainability performance from the perspective
of individual MaasS providers.
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Figure 16: System boundary and stakeholders included in sLCA of MaaS systems. Scope for holistic analysis is
shown in the left panel the focused scope of analysis in the ACCURATE project is shown in the right panel.

As shown in Figure 16, for a holistic SLCA of MaaS$ systems, multiple actors in the system should be taken into
account, including OEMs, Maa$S providers, Maa$S facilitators, suppliers to MaaS providers, and OEMs.
Furthermore, stakeholders such as workers, consumers, value chain actors, local communities, and society
need to be identified with respect to each actor in the system. As described earlier, framing and analysing
social sustainability performance with such a broad scope is highly information and time intensive, further
complicated by the fact that the MaaS system can change over time. To reduce complexity, and enable a
feasible methodology, the ACCURATE project restricts the sLCA assessment to a single MaaS provider as
shown in the right panel in Figure 16. Such analyses could be potentially extended to cover the MaaS$ system,
through combining assessments for individual actors. However, this aspect will not be investigated within the
scope of the ACCURATE project, due to the inability to collect social sustainability related data for a complete
Maa$S system. Furthermore, in the suggested scope of the analysis, stakeholders associated with a Maa$
provider, including workers, consumers (clients of the MaaS provider) and specific value chain actors are taken
into account, while stakeholders not directly involved with the provision of the MaaS service are excluded.
The exclusion criteria for stakeholders are further explained below.

5.2.2 Exclusion Criteria for MaaS Stakeholders

To maintain a clear focus on leasing manufacturing capacity, it is necessary to establish exclusion criteria that
filter out stakeholders not directly relevant to a MaaS provider. This narrows down the considered
stakeholders and ensures the sLCA remains focused on Maa$ providers. Specifically, two inclusion/exclusion
criteria are specified in our analysis

1. The scope of the analysis only includes stakeholders directly interacting with the analysed MaaS
provider. Thus, stakeholders for all other actors in the Maa$ system are excluded.

2. For the analysed MaaS provider, only stakeholders that are directly involved in maintaining or
supporting the leasing of manufacturing capacity for the MaaS provider (i.e., primary function of a
Maas provider) are included.

This targeted approach ensures that the analysis captures relevant social impacts, rather than addressing
broader or unrelated aspects of traditional manufacturing processes. It also ensures that the analysis remains
centred on a MaaS provider, which in return also simplifies the evaluation process and improving the accuracy
of social impact assessments. The following stakeholders are not considered as being directly involved in
maintaining or supporting the leasing of manufacturing capacity:
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Supply and distribution (upstream and downstream) stakeholders: Stakeholders involved in the SC
(upstream) and distribution and sales (downstream) processes are excluded from our analysis as they
are external to the MaasS provider. Upstream stakeholders are involved in supplying raw materials and
components, which are important to production but not directly related to leasing manufacturing
capacity. Downstream stakeholders handle the distribution and sales of finished products, which are
also important for market delivery but do not directly relate to the leasing of manufacturing facilities.

Full-Service manufacturing stakeholders: Full-service manufacturing companies that provide end-to-
end production processes (i.e., contract manufacturers) are excluded from the scope of our analysis
unless they offer leasing services. Only including stakeholders that provide leasing services ensures
the analysis remains concentrated on MaaS$ providers.

Other stakeholders relevant to sLCA were identified based on the UNEP sLCA guidelines (Andrews et al., 2009)
and classified based on their direct relevance to a MaaS provider, i.e., assessing whether they directly involved
or support the activity of leasing manufacturing capacity. The following stakeholders were analysed.

Value chain actors

Manufacturing and production providers: Comprises of stakeholders representing those that offer
these leasing services for manufacturing equipment, facilities, or capacity. These stakeholders are
central to the concept of a MaaS$ provider and are therefore included in the analysis.

Service providers: Comprises of stakeholders providing integration services, such as software
solutions, maintenance, or technical support essential for leased facilities. These stakeholders ensure
the smooth operation and maintenance of leased manufacturing capacity and are therefore included
in the analysis.

SC & logistics providers: Such stakeholders are excluded unless they offer services essential towards
maintaining manufacturing capacity, i.e., they are directly involved with the internal manufacturing
activities of a MaasS provider.

Financial & legal service providers: These stakeholders facilitate the necessary contractual and
financial structures to support leasing agreements that maintain the manufacturing capacity of MaaS
providers; they are included in the analysis.

Consumers

Clients of Maas$ providers: Comprises of stakeholders that lease the actual manufacturing capacity
from a MaaS provider. Therefore, these stakeholders represent end users, i.e., businesses and
organisations that utilise the Maa$S systems to meet their manufacturing needs. These stakeholders
are included in the analysis as they are the primary reason for the existence of Maa$ providers.

Society & Local Community

Society and local community: Stakeholder groups corresponding to broader society and local
communities are excluded as they are not directly involved in maintaining or supporting the leasing
of manufacturing capacity for a MaaS provider. Local communities might experience indirect effects
such as changes in local economic activities or environmental impacts, due to the activities of a Maa$
provider. Similarly, broader societal impacts such as shifts in industry standards or public policy may
influence Maas providers. Analysing such interactions is beyond the scope of the proposed analysis,

Workers

Workers: Comprises of stakeholders that provide human capital essential for maintaining
manufacturing capacity of a Maa$ provider. Therefore, they are included in the analysis scope.
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5.2.3 UNEP Guidelines and Alignment with sLCA Analysis of Maa$S

The proposed stakeholder inclusion/exclusion criteria for performing sLCA of Maa$S providers is compared
with the UNEP sLCA guidelines (Andrews et al., 2009) to evaluate the prioritisation and limitations of the
proposed framework. The UNEP guidelines provide a standardised framework for conducting sLCA and
identifying and evaluating the social impacts of various stakeholders. It should be noted that this framework
is context-agnostic. The UNEP sLCA guidelines outline the following stakeholder categories:

Workers: Individuals directly involved in production pro- cesses.

Local Community: Residents affected by manufacturing activities.

Society: Broader societal impacts, including social and economic effects.
Consumers: End-users of the products.

Value Chain Actors: Suppliers, distributors, and partners in the production process.

Nk L=
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Figure 17: Mapping of Maas Stakeholders to UNEP Specific Stakeholders.

Value chain actors

Figure 17 shows the mapping of stakeholder categories from the UNEP guidelines to those suggested for
performing sLCA of MaaS providers, and they are summarised below. This mapping aims to ensure that
relevant social impacts are considered, and that the assessment is both robust and comparable to other sLCA
studies. This approach not only enhances the reliability and transparency of the assessment but also
facilitates ongoing compliance with best practices in social sustainability (Andrews et al., 2009).

e  Manufacturing and Production Providers: UNEP Stakeholder mapping: Workers & Value Chain Actor
- These stakeholders correspond to the Workers and Value Chain Actors in UNEP guidelines, focusing
on those directly involved in production, thus aligning with the core service providers in the Maa$S
model.

e Service Providers (e.g., Software, Maintenance): UNEP Stakeholder mapping: Value Chain Actor -
Service providers in Maa$S systems can be mapped with Value Chain Actors in UNEP guidelines,
focusing on essential support services necessary for maintaining leased manufacturing capacity.

e Supply and Distribution Stakeholders: UNEP Stakeholder mapping: Value Chain Actors - Value Chain
Actors such as suppliers and distributors are included in UNEP guidelines. However, the proposed
criteria exclude these stakeholders unless they are directly related to leasing services, aligning the
focus with on Maa$ providers.
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e Financial and Legal Providers: UNEP Stakeholder mapping: Value Chain Actors - While not explicitly
detailed in UNEP guidelines, in the context of Maa$ providers, these actors offer essential support for
maintaining operations, including financial and legal frameworks important for leasing arrangements
in the MaaS model.

e Maas Clients: UNEP Stakeholder mapping: Consumers - These stakeholders lease the manufacturing
capacity and are direct stakeholder beneficiaries of the MaaS model, similar to consumers in
traditional business settings.

As discussed above, the sLCA model for MaaS providers interprets the stakeholder categories of workers and
consumers as manufacturing/production providers (i.e., human capital) and clients for the Maa$S provider.
Furthermore, value chain actors in the perspective of the MaaS provider, include stakeholders that are directly
interacting with a Maas provider, and are necessary for provisioning of the intended Maas services. Thus, for
these subcategories, stakeholder impacts, including labour conditions, health and safety, business ethics,
relationship with clients, and service impact can be assessed. Stakeholder groups related to society and local
communities are not present in the proposed sLCA framework for MaaS providers, in line with the
inclusion/exclusion criteria suggested above. This simplification limits the scope of impact assessment, i.e.,
impacts on society and local communities (e.g., job creation, upskilling, increasing societal resilience, etc.)
cannot be assessed by the proposed framework. However, it is viewed as necessary to retain the focus of the
analysis on the provision of Maa$ services, and limit data collection burdens (e.g., due to large geographic
dispersion of Maa$ providers).

5.2.4 Implementation of sLCA in the ACCURATE project

The implementation of this framework involves several steps to identify and evaluate the relevant
stakeholders effectively. sLCA typically measures stakeholder impacts using both qualitative and quantitative
measures. However, in the context of the ACCURATE project a significant challenge is (quantitatively) evaluating
stakeholder impacts as result of specific changes made on the production floor. To illustrate, if a production
line is reconfigured with a view of making it more resilient to supply disruptions, the resulting impact on worker
well-being (e.g., due to changes in shifts, adjustments of tasks) is challenging to quantify from a purely
simulation-oriented approach. On the hand other outcomes, e.g., on-time deliveries, can serve as a reasonable
proxy for impact on stakeholder such as MaaS clients. Considering such challenges, the following conceptual
approach is proposed for conducting sLCAs within the scope of the ACCURATE project.

Identify potential Define stakeholder
stakeholders for the exclusion criteria based
selected MaaS on direct relevance to Detailed evaluation of

For each stakeholder, define
relevant impacts based on
mapping the selected
stakeholders to UNEP sLCA
stakeholder categories

providers based on provision of MaaS Apply exlusion criteria included stakeholders
UNEP sLCA stakeholder services by the MaaS

categories provider

For each stakeholder impact category, Impact measurement should be

assess if changes to this impact decoupled from simulation models and Refine stakeholder, impact

category can be measured (directly or by assessed through direct measurement category selection, and

a proxy) due to production simulation-based digital

reconfiguration based on simulation-
based digital twin models

Impact measurement is coupled with twin models
simulation models based on direct/proxy

measurement

Figure 18: Proposed conceptual approach for implementing sLCA for MaaS providers.

As shown in Figure 18, the process begins with identifying potential stakeholders based on the selected Maa$S
provider(s). A preliminary list of stakeholders can be based on industry reports and the UNEP sLCA guidelines
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to ensure that all potential stakeholders are considered in the initial phase. Then the proposed
exclusion/inclusion criteria is finalised (based on data collection burdens, intended analysis goals, etc.) and
applied to arrive at a final stakeholder list. A detailed review of capacities and industry focus of these
stakeholders is performed to identify their role in the MaaS systems and to identify potential impacts on these
stakeholders due to production-specific changes made by the MaaS provider(s). Next, the ability of
existing/feasible simulation production models to capture changes in the identified impact categories is
assessed, and the scope of the overall analysis, including the selected stakeholders, impact categories, and
simulation models are subsequently refined.

TRO UC2: Production planning and control: Scheduling, dispatching, monitoring for lot excursions

Illustrative UC Exclusion
criteria: Only Relevant social impacts:
stakeholders affecting Aoply exlusi teri UC Stakeholders: Working hours, Health and
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and Value Chain Actors

. T L Equal opportunities for upskilling, Health
Possibility of quantification using and Safety Refine stakeholder, impact
production-level DES models: Working category selection, and
hours (Yes), Health and Safety (No), simulation-based digital
Equal opportunities for upskilling (No) twin models
Working hours can be measured using a
proxy: cycle time

Figure 19: lllustrative application of proposed sLCA methodology to TRO UC2.

Figure 19 presents an illustrative application of the proposed conceptual model to TRO UC2. Herein, the focus
in on supporting production planning and control under disruptions, including scheduling, dispatching, and
monitoring for lot excursions. In this illustrative example, we consider that decision-making support is provided
using a production-level DT using DES modelling. Based on the UC, workers, consumers, and value chain actors
are identified as potential stakeholders through the UNEP sLCA framework described earlier. Due to the fact
that the UC primarily focuses on monitoring and reconfiguring TRO’s internal production planning to better deal
with disruptions, the selected exclusion criteria limits stakeholders to those that can directly affect the
production process (i.e., workers). Following this, relevant social impact categories are identified for this
stakeholder group, with an analysis on whether such impacts can be quantified using the proposed DES-based
DT. Finally, proxy metrics are identified for quantifiable metrics and further refinement of stakeholder impact
categories are conducted.

Subsequent efforts in the ACCURATE pilots (WP 7) will explore the implementation of the proposed conceptual
model across the identified UCs.
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6 Ontologies for Architecting Circular and Sustainable Manufacturing-as-a-
Service Systems

This chapter outlines a methodology for achieving circularity and sustainability in MaaS systems. The
complexity of MaaS systems, which arises from the need to consider all possible combinations of MaaS
providers, potential suppliers, machinery, and process configurations, and to assess the sustainability of each
combination, is proposed to be addressed in two steps. The first step involves information integration and
retrieval using ontology as a core model, with a sustainability score as the target. To this end, the initial
ontology model, which integrates the concept of Maa$, is implemented by extending the Industry Ontology
Foundry (IOF) ontology and is evaluated using a use case. The second step, which involves the derivation of
an optimised manufacturing ecosystem using DTs, is considered future work.

6.1 Introduction

The CE concept aims to decouple value creation from resource consumption, governed by the principles of
reduce, reuse, recycle, refuse, rethink and repair (6R) (Jawahir & Bradley, 2016). Achieving circularity within
manufacturing industries has been a topic of research for many years (Aher & Ramanujan; Blomsma et al.,
2019; Pieroni et al., 2021). The concept of circularity can be applied to various dimensions of a manufacturing
system, such as business, production processes, or products (Aher & Ramanujan). An important aspect of
circularity is that it must also be sustainable to be meaningful (Blomsma et al., 2019; Pieroni et al., 2021).
Therefore, state-of-the-art approaches for establishing a CE typically use a bottom-up method, identifying
potential initiatives first and then quantifying their circularity and sustainability performance. (Blomsma et
al., 2019; Pieroni et al., 2021).

At the same time, manufacturing companies are increasingly adopting agile methodologies in production to
meet the changing customer requirements and the demands of global markets (Vathoopan et al., 2021; Zhang
et al., 2020). They are incorporating approaches like MaaS$ to achieve greater flexibility and reconfigurability
in their ecosystems (Cheng et al., 2017). The goal of MaaS$ is for manufacturers to provide manufacturing
capabilities as a service, which other manufacturers can utilise on demand (Cheng et al., 2017). Given that
circularity is increasingly becoming an essential requirement in manufacturing, several companies are
experimenting with CE initiatives (Blomsma et al., 2019; Pieroni et al., 2021). However, the complexity and
variability of agile manufacturing ecosystems make assessing circularity and sustainability a challenging and
time-consuming task. This highlights the need for systemic modelling approaches and automated assessment
techniques.

This research aims to address the above problem from a top-down approach, assuming that a company aims
to introduce a circularity initiative with a targeted sustainability (performance) score. Thus, the main goal is
to identify an ecosystem that achieves the targeted sustainability score by evaluating all combinations of
suppliers, production systems, and MaaS providers. Consequently, this paper addresses the following
research question: How can sustainability be systematically achieved in a MaaS-based flexible and circular
manufacturing ecosystem by evaluating all possible combinations of participating entities? It introduces a
two-step method for addressing this question. The first step involves integrating and retrieving information
on all possible manufacturing ecosystem combinations for the given sustainability score using an ontology.
The second step calculates and derives an optimised ecosystem by evaluating all possible ecosystem
combinations from the previous step.
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6.2 Background and Related Work

6.2.1 Manufacturing as a Service

The term MaaS is mostly associated with cloud manufacturing in literature, as cloud manufacturing is seen to
enable MaaS. Cloud manufacturing refers to making available manufacturing and associated services on the
cloud, to the consumers on a demand basis (Bouzary & Frank Chen, 2018; Cheng et al., 2017; Zhang et al.,
2020). Most of the works in this direction addresses the technologies for virtualisation of manufacturing
resources, and services, service descriptions for optimal discovery, service matching and composition, and
business models (Cheng et al., 2017; Zhang et al., 2020). MaaS, when considered as a term by itself can be
understood as a some companies offer their manufacturing ecosystem as a service, and some companies avail
and integrate this service in their manufacturing ecosystem (Cheng et al., 2017; Diedrich et al., 2022).

6.2.2 Ontology and Knowledge Graph

The term ontology has been originated in the domain of philosophy, however it has been adopted and evolved
within the domain of computer science (Staab & Studer, 2013). According to Hurtado and Nudler (2012), the
term ontology is a description or formal specification of a program, that include the concepts and relationship
of the participating agents or a community of agents. Ontologies were introduced to achieve semantic and
syntactic interoperability among heterogeneous enterprises and systems (Hurtado & Nudler, 2012; Staab &
Studer, 2013). They provide a systematically curated vocabulary that is both machine and human readable
(Hurtado & Nudler, 2012; Staab & Studer, 2013). The concept of ontology when combined with a graph data
model yields a knowledge graph that is a form of knowledge base. A knowledge graph can be understood as
an instance of ontology that comprises specific information of real-world entities (Kasie et al., 2017).

Ontologies are classified into four hierarchical level (Sapel et al., 2024). Ontologies that lie in the first layer are
top level ontologies, that are highly generic and applicable to various domains. The ontologies that lie in the
second layer are the core ontologies that describe common entities of a specific domain. The third layer,
domain specific ontologies describe properties specific to some sub-domains. Application level ontology that
lies in the fourth layer describes task specific ontology within a specific domain.

6.2.3 Ontologies for Knowledge Management

Knowledge curation and derivation are vital components of decision-making. A systematic study by Martins
et al. (2019) reveals that ontologies have been applied for knowledge curation and derivation since the early
2000s. Their study clarifies that the application of ontology for knowledge management spans various
domains, with only a few works found within the manufacturing domain. However, there has been an increase
in research in this direction since 2017.

In one of the earliest approaches of applying ontology for sustainability assessment, Giovannini et al. (2012)
proposed a product centric ontology for supporting the design of sustainable products. Their ontology
captures the relation between products and processes and identify processes that yields more sustainable
products. Benabdellah et al. (2021) proposes a similar approach for instituting an ontology for designing green
products. In their approach ontology is used for managing knowledge about various design techniques and
their relations to strategies of organisations. However their approach employs an ad-hoc ontology developed
for this specific use case. Echefaj et al. (2023) applied ontology for supplier selection in the circular economy,
developing criteria for sustainable supplier selection with an ad-hoc ontology. Psarommatis et al. (2023)
extended the IOF standard ontology for zero defect manufacturing, however did not focus on overall
circularity or sustainability of manufacturing systems.
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6.3 Problem Description

The ACCURATE project envisions an agile manufacturing ecosystem, facilitated by the seamless integration of
various entities from inside and outside of the factory. This implies that all stakeholders involved in the value
chain, or the overall ecosystem are connected with seamless interoperability. To ensure trusted and secure
communication and data exchange among partners within the manufacturing ecosystem, a Gaia-X based
framework, as shown in Figure 20, is proposed.
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Figure 20: A simplified representation of the ACCURATE framework.

An agile production environment allows for the dynamic discovery and contracting of raw material suppliers
and MaaS providers globally. Therefore, an agile production environment can have potential raw material
suppliers, potential Maa$S providers, potential customers, other supply chain stakeholders, governmental
agencies, etc. At the same time, we can assume that the production system itself has the flexibility and
reconfiguration capability to capture varying requirements from customers and market fluctuations, including
potential discrepancies. The introduction of a CE initiative within an agile production environment, hence,
needs to consider all possible combinations of different machinery configurations, raw material suppliers, and
Maa$S providers. Additionally, their interdependencies need to be defined, and correlations need to be
mapped. This has to be followed by a circularity and sustainability performance assessment. Therefore, the

overall process can be seen as a complex problem for a human, making it challenging, time-consuming, and
error prone.

From a technical point of view, the problem can be seen as a decision-making problem that requires
information from different stages such as design, development and operation stage of a manufacturing
ecosystem. The decision making must consider information retrieved from various stakeholders, associated
tools, production resources, supporting systems, operational information, economic information, etc., that
take part in these stages. This leads to the requirement of having the technical characteristics as shown in
Table 6 for the proposed DSS.
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Table 6: Required characteristics of the proposed decision support system

Requirement
RQ1 Semantic interoperability among humans, tools and various systems
RQ2  Ability to model information from various disciplines and their interaction
RQ3  Ability to capture dynamic and evolving knowledge
RQ4  Scalability

6.4 Ontology as a Core Enabling Technology

A systems engineering process consists of interconnected methods and models (Estefan, 2008; Kranabitl et
al., 2024). A method is a well-defined procedure for achieving a specific objective and may include a sequence
of steps and their procedures. Thus, a method defines “HOW” an objective can be achieved (Kranabitl et al.,
2024). A method takes one or more models as input and generates the required objective as output.
Depending on the use case, the method will also incorporate associated models for supporting the generation
of the required objective. Additionally, a method must be implemented in a tool. Choosing the right method
is critical for the success of a project (Kranabitl et al., 2024).

Inspired by the systems engineering process (Estefan, 2008; Kranabitl et al., 2024), we define our method to
consist of two sequential steps, as shown in Figure 21. The first step is information integration and retrieval,
and the second step is the derivation of optimised configuration. The methods have input models, as depicted
on the left-hand side of the figure, and out-put models, as shown on the right-hand side. The associated model
of a method is illustrated above the method, and the tool where we expect to implement the method is shown

below the method.
Targeted Knowledge
Sustainability graph
Score

Step 1 Matching configurations
Data integration and of participating entities
retrieval for the targeted
sustainability score

Available configurations
of participating entities

Targeted Maodels for

Sustainability decision
Score support

Matching configurations Step 2 Optimised
of participating entities Method for deriving configuration
forthe targeted optimized configuration for the targeted
sustainability score sustainability score

Figure 21: Proposed method for achieving circularity and sustainability in MaaS systems.
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The first step is defined to address the problem of identifying right combinations of models from different
stakeholders, along with their interdependencies and correlations. We propose using models and data from
across the value chain as inputs to this method along with the targeted sustainability score. The expected
output of this method is the matching configurations of participating entities for the targeted sustainability
score (a reduced space).

Identifying the combinations of different stakeholders and their involved models, along with their
interrelations and correlations, can be seen as an information integration and retrieval problem. Ontologies
have been found to be very efficient in addressing information integration and retrieval problems due to their
axiomatic modelling capabilities (Kasie et al., 2017). Considering the main challenge of the first step of our
methodology as an information integration and retrieval problem, we propose using an ontology driven
knowledge graph as an associated model to our first step. By using a knowledge graph an associated model
for our first step, we anticipate that the overall effort required to develop the proposed decision support
system will be reduced. Additionally, the characteristics/features of the proposed DSS as shown in Table 6
(RQ1, RQ2, RQ3, RQ4) can be completely satisfied by an ontology driven knowledge graph.

The second step is envisioned to use the output of the first step (a reduced space of the possible
combinations) as its input model for deriving an optimised ecosystem configuration for the given sustainability
score. We propose to use a DT based simulation and optimisation for this step. A detailed elaboration of the
second step is out of scope in this work and seen as an immediate future work.

6.5 Agile Manufacturing Ecosystem Model using Ontology

6.5.1 Industrial Ontology Foundry

The next step to identifying an ontology driven knowledge graph as an associated model within the DSS, is to
define the ontology model for the MaaS based agile manufacturing ecosystem. Although ontology concepts
emerged in the 1980s, their application in manufacturing has been limited due to high development efforts
(Hurtado & Nudler, 2012; Staab & Studer, 2013). ISO/IEC 21823-3 standard for semantic interoperability
recommends reusing or referring or extending available ontologies instead of building an ontology from
scratch (Sapel et al., 2024). However, many past approaches focused on creating ad hoc ontologies tailored to
specific use cases, resulting in data silos applicable only to those specific scenarios (Kulvatunyou & Ameri,
2019).

Among the available, widely accepted ontologies within manufacturing domain include the initiatives such as
Onto-STEP and Onto-PDM, AMLO (Kulvatunyou & Ameri, 2019; Sapel et al., 2024; Yang et al., 2023). Onto-
STEP converts the aspects of STEP standard into ontology (Sapel et al., 2024). OntoPDM converts product data
management aspects into ontology (Sapel et al., 2024). AMLO converts the standard AutomationML and
related aspects into an ontology (Sapel et al.,, 2024). However, these ontologies themselves are not
standardised accordingly.

The IOF (Ameri et al., 2022; Kulvatunyou & Ameri, 2019; Sapel et al., 2024) is an initiative by the OAGi® for
developing standard ontologies applicable for the manufacturing domain. IOF uses Basic Formal Ontology
(BFO): an ISO/IEC PRF 21838-2.2 standard ontology applied in several domains as a neutral top level format,
as the top-level format and provides IOF core as the core ontology. A matured version of IOF core ontology is
now available for public download. Additionally, provisional versions of domain specific ontologies such as
supply chain management and maintenance are also available for public download’. The IOF envisions that
various parties can extend the IOF reference ontologies to accommodate required sub-domain or application
ontologies (Kulvatunyou & Ameri, 2019).

5 https://oagi.org/
7 https://spec.industrialontologies.org/iof/ontology
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IOF core ontology covers production processes, resources, and measurement entities within a manufacturing
company (Sapel et al., 2024). IOF SC management covers basic aspects needed for modelling the SC and
associated entities of a manufacturing ecosystem. With these two ontologies, several basic competency
guestions that need to be answered in an agile manufacturing ecosystem have already been addressed by IOF
ontologies (Kulvatunyou & Ameri, 2019).

Considering the coverage, an active community that supports the development, availability of ontology as
files (Sapel et al., 2024), we decide to develop our ontology with the IOF. Though, similar initiative such as
Ontocommons (an initiative to compile information on existing ontologies in European Union) exist, IOF is
found to be most stable initiative with growing community (Sapel et al., 2024). The idea is to maximum reuse
and merge IOF ontologies in addressing our research objective and extend it wherever required.

6.5.2 Proposed Ontology Model

Our initial experiments with IOF show that, several aspects and entities required for achieving our research
goal are available within IOF ontologies. These include Product, Processes, Resources models and the relations
among them in the form of PPR model (Vathoopan et al., 2021). Various aspects of supply chain, such as
different stakeholders (buyer, consignee, supplier, etc.), as well as logistics related, and geography related
aspects are also available.

From the perspective of the ACCURATE project, the manufacturing ecosystem itself is seen in an agile
environment from a service-oriented perspective to integrate the concept of MaaS. As per ISO 59020
(Standardization, 2024c), the aspects of circularity can be applied to any levels within or out of an
organisation. Redefining the main goal of ACCURATE, we arrive at: identifying the configuration(s) that yield
the required sustainability score, to define a manufacturing service as the basic entity to which the aspects of
circularity can be applied. Hence, the first entity to be modelled within the ontology is a manufacturing
service.

There are several approaches describing the services within manufacturing domain (Cheng et al., 2017,
Diedrich et al., 2022; Kulvatunyou & Ameri, 2019; Wu et al., 2015). Many studies use capability as a synonym
to service, while other studies use skill as a synonym to service (Diedrich et al., 2022; Kulvatunyou & Ameri,
2019; Vathoopan et al., 2021). According to Platform Industrie4.0 (Diedrich et al., 2022), a service within the
domain of manufacturing specifies the capabilities offered by a service provider to a service requester with
extended description of its commercial aspects. Additionally, they distinguish the differences between service,
capability and skills. We adopt the definition of a service from Platform Industrie4.0.

The main goal of MaaS is to implement manufacturing as as service in similar way to the concept of web
services. From the web service domain, there was an effort to model a web service using the concept of
ontology. This effort is known as OWL-S (Martin et al., 2004), and is available as a recommendation from W3C.
The model of a web service as seen from OWL-S (Martin et al., 2004) is shown in Figure 22.
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Figure 22: Mapping of the definition of MaaS from Platform Industrie4.0 to the web service model.

According to OWL-S, a service is specified using a profile, that is used to publish the service within a registry.
The service profile is discoverable by someone who requests to avail a specific service. Then, there is model
of the service itself, that describes the service specification and its various other aspects. Finally, the service
has a grounding model, that defines how a service is implemented, for example using a specific technology
(Martin et al., 2004). Mapping the definition of service from Platform Industrie4.0 to the web service model,
we see the model of a MaaS$ using |OF.

The IOF ontology has three aspects that need to be understood for defining the model as shown in Figure 22:
1) Capability, 2) Process and 3) Action specification (Kulvatunyou & Ameri, 2019; Kulvatunyou et al., 2022). A
capability is a disposition (potential) that a material entity has, which an agent is interested in realising. The
capability as defined in IOF standard is realised in a process at the organisation it holds. Action specification
describes what a participant shall do in a process (Kulvatunyou et al., 2022). Relying on Diedrich et al. (2022),
we define a MaaS as a capability of a manufacturing/business organisation or their internal resources that are
offered as a service with extended description of its commercial aspects. The model of the capability as shown
in IOF ontology however, is abstract and not capable to integrate the concept of model of a MaaS (Bouzary &
Frank Chen, 2018; Cheng et al., 2017; Diedrich et al., 2022; Wu et al., 2015).

After discussion with industrial partners in the ACCURATE project and analysing the approaches from
literature, we rely on a registry/platform based approach for implementing the concept of MaaS. The service
providers publish their Maa$S within the registry and the service consumers can search for services using
different requirements. On finding a match, a consumer can go for further processes such as price negotiation
and contract fixing and the provider executes the service as per the contract. The first step in this approach is
publishing a service within the service registry by the provider that are discoverable by a potential consumer.
We consider simple services such as single machine hours, man hours, logistic service, etc. This type of service
requirement can arise, for example when a machine at the company undergoes unplanned maintenance or
to meet a customer requirement that cannot be fulfilled with existing machinery or available manpower. The
customer requirements may include service specifications, quantity and time requirements, etc. Further the
customer may also specify preferences such as geographical location, minimum time frame, and sustainability
criteria.
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In collaboration with our industrial partners, we defined the following competency questions to develop a
Maa$S model using the IOF ontology:

Who provides service X?

What is the time period during which the service available?
What are the available parameter range of the service provided?
What are the quality attributes of the provided service?

What is the quantity capability proposed by the service provider?
Is there any preconditions that need to be satisfied for availing the service?
What are the inputs required for availing the service?

What are the outputs of the service?

What is the geographic location of the provider?

10 What are standards assured by the provider?

11. What is the minimum time frame assured by the provider?

©oNOU AWM R

For answering the aforementioned competency questions, the model of capability in IOF is extended to form
our proposed MaaS model as shown in Figure 23. To model the specification and attributes of a service, we
propose to include the following additional entities:

e ServicelD: related to the MaaS model with a hasServicelD object attribute. The servicelD can refer to
service classification standards such as VDI 2860, DIN 8593, etc., for unambiguous matching
(Kulvatunyou & Ameri, 2019; Vathoopan et al., 2021) along with the basic description of the service.

e Preconditions: related to the MaaS model via hasPrecondition object property, Preconditions are
proposed to include any conditions that have to be met for availing the service such as minimum
quantity required.

e [nput: related to the MaaS via hasinput object property. Input entity describes the input/s required
for availing a service such as raw materials, drawings, etc and their specifications.

e Qutput: related to the MaaS via hasOutput object property. Output entity provides details of the
output/s obtained as a result of executing the service and their specifications such as quantity and
quality.

e Parameters: related to the MaasS via hasParameter object property. Parameters can be used to define
the parameters of an availed service.

o Attributes: related to the MaaS via hasAttributes object property. Attributes can describe the quality
attributes of a MaaS. To describe the time frame of the offered service we propose to include
Availabilityinfo entity. This entity can be related to the MaaS model via hasAvailabilityinfo object
property. Availability information is provided to include details on when exactly the service is available
for consumption.

e Realtimelnfo: related to the MaaS via hasRealtimelnfo object property. Realtimelnfo entity provides
real time information on the execution of a realised process.
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Figure 23: Proposed MaaS model in ACCURATE.

A published manufacturing service can adopt a more intricate format to encompass the entire production of
a product or a specific product module. This type of a service request might include other details such as
product details and associated requirements. This type of service definition is out of scope of this chapter. In
IOF, a capability of published service is realised in a process. Hence, entities of the proposed MaaS model have
to be mapped into the process model as well. The process model can include other details such as composition
information. Further extensions, in this direction is seen as a future work.

6.6 Evaluation and Preliminary Results

To evaluate the proposed models, we take the use-case of a sample company producing Printed Circuit Board
(PCB). The PCB manufacturing involves several processes such as Surface Mount Technology (SMT) Top, SMT
Bottom, Automatic Visual Inspection, Depanelling, Automatic inline testing, functional testing, etc. Among
these processes, Depanelling is used to separate the PCBs into modules or separate products based on the
requirements. It is performed using several techniques such as Laser based cutting, manual cutting, etc.
Assuming an unplanned maintenance of an in-house machine, the company needs to avail depanelling service
from the MaaS providers.

A company’s search criteria for a required service can be formatted as follows:

Requirement: PCB depanelling service (Curf width: 20um, Quantity: 3000, Time frame: 4-20 days from
1 Nov 2024)

Preferences: <500Km from Tolouse France, 10 days delivery, CO2_intensity < 10 kg/m, scrapRate < 5%.

The offered service from a provider may take the form as shown in Figure 23 in this case. For implementing
the matching of requested service and provided service, several approaches exist in literature (Bouzary &
Frank Chen, 2018; Cheng et al., 2017; Zhang et al., 2020). Implementing a matching algorithm is out of scope
of this research.
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Figure 24: A sample Maa$S published in the service registry.

We used Protégé editor (Yang et al., 2023) for developing our ontology. We modelled three sample MaaS with
different specifications based on the model shown in Figure 24. SPARQL based query was formulated to model
the requirements and preferences of the sample company. The query resulted the matching MaaS from the
three available options.

6.7 Discussion and Conclusion

This chapter discusses the use of ontology-driven knowledge graphs to achieve sustainability in an agile
production environment with networked MaaS. By setting a target sustainability score from the outset, the
goal is to optimise the configuration of suppliers, production resources, and MaaS. This research proposes a
two-step method to achieve this goal. The first step, constructing an ontology for information integration and
retrieval, is elaborated upon.

As an initial contribution, after reviewing extensive literature and ontology selection criteria (Kulvatunyou &
Ameri, 2019; Kulvatunyou et al., 2022; Sapel et al., 2024; Yang et al., 2023), this research identifies IOF as the
preferred ontology for developing an agile manufacturing ecosystem. Anticipating the future adoption of
Maas similar to web services, this study proposes a MaaS model inspired by web services (Martin et al., 2004).
It maps the state-of-the-art definitions and models of Maa$S within the manufacturing domain (Cheng et al.,
2017; Diedrich et al., 2022; Vathoopan et al., 2021; Wu et al., 2015). Extended entities required for modelling
the proposed MaaS within IOF are introduced based on derived competency questions. The proposed model
is evaluated using an example of a company searching for a specific service in the proposed service registry.
Our initial experiments support the claim, as shown in (Kulvatunyou & Ameri, 2019; Kulvatunyou et al., 2022;
Sapel et al., 2024), that most aspects of an agile manufacturing ecosystem can be modelled by reusing the
IOF Core and Supply Chain ontologies. Further extensions required based on our MaaS model, such as
composable services, are considered future work. The development of a MaaS taxonomy applicable to our
use cases is identified as an immediate future task. Additionally, the development of the second step, which
involves using DTs to optimise a sustainable manufacturing ecosystem, is also seen as future work.
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7 Circularity, Sustainability, and Resilience Indicator Framework for a Maa$
System

7.1 Data Collection for Circularity, Sustainability, and Resilience Assessment

To understand the feasibility of collecting primary data for performing circularity and sustainability
assessment for MaaS providers, a two-step data collection process was setup for the pilots. The proposed
methodology for circularity and sustainability assessment was explained to the pilot partners in ACCURATE,
to give them an overview of the need and significance of various data to be collected from the production
lines.

1. The first data collection instrument was a detailed Excel template that asked the pilot partners to: (i)
assess the feasibility of data collection, and (ii) report data points on a representative production line.
This template will be presented in further details in the paragraphs below.

2. The second data collection instrument refers to follow-up discussions conducted with the ACCURATE
pilot partners to further understand existing challenges in data collection, and possibilities for
addressing data gaps through the course of the ACCURATE project. These discussions are also
presented in further details in the paragraphs below.

7.1.1 Data collection template distributed to ACCURATE pilot partners

In addition to the production line information for developing the production DES models, we distributed a
data collection template to collect information required for computing circularity and sustainability indicators,
linked to the developed simulation models. The pilot partners were asked to collect these data points for a
representative production line (for which the simulation models will be constructed) and to report (i)
historical data availability, as well as (ii) feasibility for collecting these data from the production line, e.g.,
using existing data collection systems or by implementing additional systems. Table 7presents the data types
requested from the ACCRURATE pilot partners, along with a brief explanation of the data type and the
purpose of data collection.

Table 7: Data collection template distributed to ACCURATE pilot partners for estimating the feasibility of
computing circularity, sustainability and resilience indicators.

# Category Data Type Brief Explanation Purpose of data collection

01 Product Component Mass  Mass of individual components for Computing environment intensity of
(kg) representative products produced in  production process and mass-based
the production line based on the Bill  CE indicators.
of Materials.
02 Product Component Material composition for individual Identifying environmental impacts
Material components for representative from material extraction and end-of-
Composition products produced in the production life stages. Computing production
line based on the Bill of Materials. environmental impacts based on
material type.
03 Product Component Scrap  Average rate of scrapped Computing additional
Rate (%) components sent for disposal. environmental impacts due for
meeting a specific order quantity.
04 Product Component Average rate of components sent for Computing additional
Rework Rate (%)  rework. environmental impacts due for
meeting a specific order quantity.
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05 Process Average Percentage of total production time Estimating  process flexibilities
workstation that a workstation is active/in use. needed for replanning production

utilisation rate (%) under disruptions.

06 Process Workstation Annual hours of planned Estimating  process flexibilities

planned maintenance for a individual needed for replanning production
maintenance workstations on the product line. under disruptions.
(hours)

07 Process Workstation Annual  hours of wunplanned Estimating process flexibilities
unplanned shutdowns for a individual needed for replanning production
shutdowns workstations on the product line. under disruptions.

(hours)

08 Process Workstation Duration of operator breaks planned Estimating  process flexibilities
operator breaks  on specific workstation. needed for replanning production

(timestamp) under disruptions.
09 Process Workstation In the case where multiple Estimating process flexibilities
changeover time  components can be produced in a needed for replanning production

(hours) single workstation, the time for under disruptions.

configuring it for a new product.

10 Process Workstation Annual energy consumption of each Computing environmental impacts

energy use (kwh)  workstation on a production line. due to energy usage.

11 Process Workstation List specifying type and annual Computing environmental impact

consumables (qty) amount of consumables for each due to material usage.
workstation.

12 Process Workstation List specifying type and annual Computing environmental impact

emissions (qty) amount of emissions resulting from from emissions to air, water, and
each workstation. land.

13 Human Social impact Prioritisation of social impact Estimating focal areas for social

considerations categories relevant to the impact assessment for MaaS
production system. providers.

14 Human Training and Need for upskilling and training Estimating social impacts from
upskilling workers on specific processes on on changes to  production and

the production line. opportunities for improving well-
being.

It should be noted that the data presented in Table 7 should not be considered as comprehensive data inputs
for estimating for assessing the resilience, circularity, and sustainability of the MaaS$ provider. They represent
complementary data collected, over those required for developing the DES based simulation models in WP 3
and WP 4. Furthermore, this data collection instrument served as an exploratory mechanism for opening up

a conversation with pilot partners on data availability and gaps. Consequently, we did not specify rigorous
data quality criteria and specifications at this stage. Finally, actual data provided by the partnersis not detailed
in this report due to confidentiality reasons.

7.1.2 Follow up discussions with ACCURATE pilot partners

The ACCURATE pilot partners were invited for follow-up discussions through the WP 3 meetings, as well as
scheduled one-on-one meetings to better understand existing challenges with data collection and resolving
data gaps. The overall goal was to reach a collective agreement on what data points could be modelled as
primary data (i.e., directly collected from the production lines) and the data points that needed to be
modelled from secondary sources including, commercial LCI databases, and peer-reviewed articles.
Furthermore, the prioritisation of the computing specific indicators was discussed based on the realised data
collection constraints.
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7.1.3 Results

Results provided by the partners we analysed to understand the availability and level of aggregation of
these data as shown below. It should be noted that the results shown represent the as-is situation across
the ACCURATE pilot partners. Future work will recommend specific implementation solutions for data
collection, based on the indicators selected for each UC.

#
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Table 8: Overview of data availability and data collection changes for the individual data types.

Data Type

Component Mass
(kg)

Summary

The mass of individual components was available in various technical sheets and
engineering documentation. Given the complexity of collating these data, the only solution
would be to make direct measurements on the production line and establish an aggressive
mass-based cut-off criteria to limit the number of direct measurements to be made. It
should be noted that the focus of the ACCURATE project is on the manufacturing processes,
and not on the produced products themselves; estimating a PEF for a product is outside
the project scope. Therefore, mass measurements are further restricted/aggregated to
those required for estimating mass-intensity based indicators (e.g., ratio of total energy
consumed in a manufacturing process to total mass flow).

02

Component
Material
Composition

Component material composition was only available in various technical sheets and
material specification data sheets. Given the complexity of collating these data, and the
focus of ACCURATE, the use of data is only relevant for identifying the characteristic of mass
flow data (e.g., determining if a mass flow is e-waste, metal scrap, etc.).

03

Component Scrap
Rate (%)

In cases where the product is electro-mechanical or electrical, the number of components
was high, and several components were sourced from suppliers. Therefore, it was not
possible to estimate the scrap rate for individual components. Given that production lines
were multi-step processes, component scrap could be generated at different stages and in
different workstations. This complexity was exacerbated when multiple products were
produced (high-mix production) on a specific line. Consequently, such estimations would
have to typically rely on averaged data at a product level.

04

Component
Rework Rate (%)

Availability of detailed rework data was varied. In cases where the product is electro-
mechanical or electrical, the number of components was high, and several components
were sourced from suppliers. Therefore, while it was possible to estimate a rate for the
overall product, component-level data was unavailable. In some instances, reworking was
strictly limited or prohibited due to safety implications. Consequently, the computation of
sustainability and circularity indicators should consider challenges in estimating these data.

05

Average
workstation
utilisation rate (%)

Utilisation rate data for specific machines or workstations was typically monitored
periodically in terms of Overall Equipment Effectiveness (OEE). However, considering the
number of workstations/machines involved, it was noted that collating such data would
require significant effort. Consequently, the computation of sustainability and circularity
indicators should consider challenges in estimating these data.

06

Workstation
planned
maintenance
(hours)

Planned maintenance data for specific machines or workstations was typically documented
in maintenance logs. However, considering the number of workstations/machines
involved, it was noted that collating such data would require significant time and effort.
Consequently, the computation of resilience indicators (e.g., in relation to reconfiguration)
should estimate these data from secondary data sources or heuristic data.

07

Workstation
unplanned
shutdowns
(hours)

Pilot partners reported that it was challenging to accurately quantify the probabilities or
average mean time to failure at an individual workstation level. Resilience indicators
related to production line reliability (e.g., time to failure, time to repair) would therefore
have to rely on expert estimates. Furthermore, it was pointed out that in general, the
operations analysed in the scope of the ACCURATE project were highly mature and
unplanned failure is not a major bottleneck. Non-operation of machines due to other
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factors e.g., insufficient work-in-progress was seen as a more important consideration in
terms of overall resilience.

08

Workstation
operator breaks
(timestamp)

Operator breaks that are scheduled are well known. The relevance of the breaks to the
operation of a workstation varied significantly as some processes could operate without
continuous monitoring. This variance should therefore be considered while estimating
sustainability performance (i.e., if a machine is in idle state during a break) and resilience
performance (e.g.,, time to detect failures, time to reconfigure the production line, etc.)

09

Workstation
changeover time
(hours)

The ability to estimate changeover times was a function of process complexity as well as
flexibility. For example, in a highly flexible process such as automated printer circuit board
assembly, that can produce multiple variants over a shift, it was challenging to estimate
changeovers. In the other extreme, where a production line was dedicated towards
producing a single product, they were non-existent. In other instances, e.g., where the
entire line needs to be reconfigured for producing a different product, changeover times
were unknown. Therefore, these data, if required for computing performance indicators,
would require expert-based and/or heuristics-based values.

10

Workstation
energy use (kwh)

Energy consumption data was typically collected for sustainability reporting. These data
were typically available at the level of the entire factory/plant and in some specific
instances at the level of individual lines. Challenges including proprietary hardware
interfaces, cost of data collection, and uncertainty in data usefulness limit data collection
on individual workstations or machines. Consequently, sustainability and circularity
indicators requiring energy use data at the machine level would require inputs from
secondary data sources (e.g.,, commercial LCI databases) and/or additional primary
measurements.

11

Workstation
consumables

(aty)

Data on consumables (e.g., tools, lubricants, water) could be potentially assessed through
purchasing records. However, given the consumables were shared across multiple lines and
workstations, it was challenging to attribute a specific quantity of usage to a workstation
without additional measurements. Consequently, sustainability and circularity indicators
requiring these data would require inputs from secondary data sources (e.g., commercial
LCI databases) and/or additional primary measurements.

12

Workstation
emissions (qty)

Process emissions were typically solid wastes (e.g., unusable scrap) and liquids (e.g., spent
fluids) that were sent for downstream processing. Aggregated data was available in some
instances. Attributing a specific quantity of usage to a workstation will require significant
additional effort. Consequently, sustainability and circularity indicators requiring these
data would require inputs from secondary data sources (e.g., commercial LCI databases)
and/or additional primary measurements.

13

Social impact
considerations

A significant focus for Maa$S providers was on ensuring a well-functioning and beneficial
relationships with their value chains. The well-being of workers was also pointed out as
important. Worker protection was seen as not relevant to the partners, due to the presence
of strong worker protection regulations in their operations regions and high voluntary
standards. Efforts for data sharing on social impacts are at an early stage and not fully
implemented. It should be noted that given the scope of the ACCURATE project, such
considerations are not expected to be dynamically linked to DT models; future efforts will
investigate if relevant social impacts can be continually monitored.

14

Training and
upskilling

All pilot partners reported having a mix of automated and manual processes, with the
manual processes typically requiring specialised skills and extended training. Therefore,
training and upskilling are seen as vital to the resilience of the business. Lack of sufficient
local labour force and the extended time for training were viewed as challenges. Future
efforts should investigate if it is possible to evaluate the effect of disruptions (and the
consequent actions taken by a partner) on worker training and upskilling.

Based on the above results, the following recommendations are drawn for the integration of resilience,
sustainability, and circularity indicators with the DES models that will be developed for the various use cases.

CE indicators selected for assessing the pilot cases should largely be process focused and utilise
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aggregated material and energy flow information where possible. It will be challenging to develop
and integrate indicators at a high level of granularity (e.g., at an individual workstation or component
level) due to existing data availability and the significant costs of added data collection.

e Limited primary inventory data is available to compute environmental sustainability indicators.
Consequently, there is a need to rely on secondary data sources, including commercial databases and
peer-reviewed articles. Sufficient care should be taken to select representative process models, which
require further discussions with the pilot partners. The models should be developed in a modular
manner (i.e., when considering the integration of production simulation models and sustainability
assessment models) to ensure secondary data can be substituted with primary data in the future,
improving the accuracy of the overall assessment.

e Coupling of social sustainability indicators with the DES models, is only possible for indicator
categories where a proxy can be established using direct measurement on the production line (e.g.,
OTD). Worker-specific indicators are to be progressively monitored, but it is potentially challenging to
couple them with the DES models due to the lack of data and knowledge to establish causal
relationships.

e At the production level, computation of resilience indicators needs to rely on average estimates for
factors such as equipment availability, reliability, and reconfigurability. While such estimates can be
readily integrated with simulation models, follow-up dialogues with the pilot partners should ensure
that these results are representative of observed historical behaviour, relying on their domain
expertise.

7.2 Circularity and Sustainability Indicators Workflow

To assess the circularity and sustainability in the MaaS$ system, a combination of indicators from the 1ISO 59020
standard and sustainability LCA methods will be applied. Additionally, the difference between UCs focusing
on supply chain dynamics and UCs looking at production necessitates the assessment of different indicators
between the two cases. The indicators were chosen based on the following criteria: together, the indicators
can span a range of data types and aspects of sustainability and circularity, and there is reasonable belief that
we will be able to obtain the data necessary to calculate these indicators from the simulation, the partners,
or a database.

7.3 Circularity and Sustainability Indicators on the Supply Chain Level

The primary indicator recommended for sustainability on a SC level is emissions associated with
transportation of materials. These emissions can be found with the knowledge of the travel path for materials,
the vehicle carrying the materials, and the material weight. LCA databases, such as the ecoinvent database®
contain information on the emissions associated with different vehicles and using the weight and distance
travelled, emissions can be extrapolated from this. This indicator was chosen because it is a relatively simple
sustainability indicator, and it can capture the environmental impacts of the transportation of materials under
disruptions. For instance, if a critical supplier is disrupted and the company has to find an alternative source,
the alternative source may have higher emissions if they use different means of travel or if products are
shipped from further away. While a deeper analysis into the different materials being sourced can unveil more

8 http://ecoinvent.org/database/
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about the true sustainability of the SC, this is a task that is too complicated for the pilot partners, and to be
undertaken as a part of the ACCURATE project.

A key aspect in CE is the circularity of materials, thus it is critical to look at circularity indicators as well as
general sustainability indicators. Two circularity indicators were chosen to be recommended from the
ACCURATE Circularity Indicator Screening Tool, to be used for SC simulations. These indicators were adapted
in order to make them specially tailored to being applied on a supply chain level. The first indicator is the SC
waste factor. Waste factor is an indicator that divides the waste generated during the production of a product
by the total weight of the product, in this way, showing a proportion of waste produced to product produced
(Jerome et al., 2022). The next circularity indicator is taken from the current ISO standards, percent recycled,
reused, or green materials used in production. This indicator is as it seems, a proportion of recycled, reused,
or green materials against the total mass of materials used (Standardization, 2024c). To adopt this indicator
to work within a SC context, instead of materials used in production, it will look at percent of materials
delivered to customers that are recycled, reused, or green.

7.4 Circularity and Sustainability Indicators on the Production Level

On a production level the recommended indicators measure impacts due to energy usage. Data on energy
demand and the sources of energy are relatively easy to find for a singular manufacturing facility. To measure
the sustainability of energy usage, WP 3 and WP 7 will look at two metrics: average percentage of renewable
energy and energy intensity. The average percentage of renewable energy is a measurement of the
proportion of energy used that comes from a renewable source. This metric is a supplemental measure from
the 1SO 59020 standard, meant to complement measures of material circularity (Standardization, 2024c). The
other metric, energy intensity, is the total energy demand for a given period of time, divided by the total mass
of products produced. This can be seen as generally showing the energy efficiency in the production of goods
(Jerome et al., 2022).

To compliment the aforementioned sustainability indicators, four circularity indicators are recommended.
These indicators cover material circularity and water circularity. In the 1ISO 59020 standard, aspects of
circularity are split into five categories, resource inflows, resource outflows, energy, water, and economics
(Standardization, 2024c). The sustainability indicators chosen for production, percentage of renewable energy
and energy intensity, cover the energy category.

Resource outflow circularity is addressed using the indicator waste factor. Waste factor is the total waste
produced during production divided by the total mass of product produced (Jerome et al., 2022). Shrinking
the waste factor results in less waste produced during the production process. This can be reduced in many
different ways whether by changing the product design, the production process, or by diverting material from
being waste by reusing it. To cover the resource inflow, the metric of average recycled content from the 1ISO
59020 standard is recommended. Average recycled content is one of the mandatory indicators mentioned in
the ISO standard on measuring and assessing circularity performance. It is the fraction of mass of a product
that is produced with recycled material (Standardization, 2024c).

The final category that is within the scope of the ACCURATE project is water circularity. This will be covered
using two metrics, percent water withdrawal from circular sources and percent water discharged in
accordance with quality requirements. Water is an often-overlooked aspect of CE. Water withdrawn from a
circular source is water that has either already been used once, so it is not considered to be virgin water, or
it comes from a natural source that is renewable. Water discharged in accordance with quality requirements
means that it leaves the facility and goes to either another facility to be reused or it is in a state that it can be
returned directly to the environment without negative environmental impacts. This is where water is cycled
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back into the circular system, either through reuse in a different context, or by renewing the natural water
cycle (Standardization, 2024c).

7.5 Resilience Indicators in Production Optimisation

The resilience indicators chosen to be integrated in the simulations were mainly based off of a performance
curve, where a chosen performance of a system (i.e., OTD, material delivered, product produced) is plotted
against time with a disruption occurring during the simulation. It is not yet decided exactly how system
performance is measured for the specific UCs as further information on the DES models is needed.

Similar to circularity and sustainability indicators, resilience indicators were chosen based on, whether a
simulation dealt with the SC or the production process, since different aspects of resilience are more
applicable to one or the other. However, the majority of these indicators were chosen to be used with both
the SC simulations and the production level simulations.
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Figure 25: (a) Recovery Time and (b) Robustness adapted from Wang et al. (2022)

Figure 25 shows two performance curves with different aspects highlighted, these different aspects are used
to calculate the three resilience indicators chosen to assess all user scenarios, these being recovery time,
robustness, and capacity loss. Recovery time, indicated by Figure 25(a), is calculated as the time between the
worst performance of a system and the time at which the system reaches a new steady state (Wang et al.,
2022). This indicator quantifies how long it takes for a system to recover after a disturbance. The next
resilience indicator chosen to be calculated in all scenarios is robustness. While robustness can be defined in
many ways, in the scope of this work, it is defined as worst performance of a system under disruption (Wang
etal., 2022) as also shown in Figure 25(b). The difference between robustness and reliability is that robustness
assesses the resilience of a system under a large and unexpected disruption, while reliability focuses on a
system withstanding smaller but more common disruptions (Uday & Marais, 2015). By measuring the greatest
impact an event has on the overall system performance, this definition of robustness is sufficient to assess

the ability of a system to withstand large, unexpected events.
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Figure 26 Capacity Loss on a Performance Curve adapted from Wang et al. (2022)

The final resilience indicator chosen for all cases is the capacity loss. As shown in as shown in Figure 26,
capacity loss is the difference between the performance of the system pre-disruption and the performance
of the system after it has reached a steady state after recovering. In Figure 26, there is no change in the
capacity of the system, however, in other cases a full recovery is not possible, and a new system has a lower
capacity that the old one. This difference would be the loss in capacity.

7.6 Resilience Indicators on the Supply Chain Level

On an SC level, the recommended resilience indicator is time to failure. Time to failure is illustrated in Figure
27, and is the difference between the time that a disruption occurred and the time that system performance
begins to fail (Wang et al., 2022).
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Figure 27: Time to Failure adapted from Wang et al. (2022).

Time to failure is important in assessing the SC focused aspects in ACCURATE as the pilots represent SC which
are complex and the impacts of disruptions downstream of production are unknown. Thus, the time that it
takes for a disruption to affect system performance will provide helpful insights into the true impacts of a
disruption and the amount of time that a reconfiguration could take place.
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7.7 Resilience Indicators on the Production Level

On a production level, the focus of the disruption models and DTs are focused on the product made and how
disruptions in the process affect the ability of a company to deliver on time. Because of this, two additional
resilience indicators were chosen to be applied to production related simulations. These indicators are loss of
performance and rapidity in the recovery phase, shown in Figure 28(a) and Figure 28(b) respectively.
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Figure 28: (a) Loss of Performance, and (b) Rapidity in the Recovery Phase, adapted from Wang et al. (2022)

Loss of performance is the total amount of lost production during the disruption period, calculated by the
integral of the baseline performance minus the disrupted performance over the period of time from the
beginning of performance declines to the recovery of performance to a steady state (Wang et al., 2022). This
metric is important for assessing resilience on a production level, because it quantifies the total amount of
production lost due to a disruption.

The other metric which was chosen to assess production level resilience was rapidity in the recovery phase.
Rapidity in the recovery phase is the rate of increase in performance from the point of the worst performance
to the time that a steady state is reached. It illuminates how rapid a system can recover and thus can show
more dimension, combining aspects of robustness, defined as the worst performance level reached, and time
to recovery (Wang et al., 2022). This metric was chosen after closely reading through the UCs for the three
pilot partners in ACCURATE. These UCs were developed as a part of WP 7 during the ACCURATE project. In
each UCs involving production, pilot partners stated that a rapid recovery was an important aspect to quantify.

7.8 Maas system Use Case Workflows

In the ACCURATE project, nine distinct UCs were created as a part of WP 7. Four UCs correspond to the partner
Airbus Atlantic, two to Continental, and three to Tronico. Each UC investigates important aspects of SC and
production resilience based on real-world needs from the pilot partners. These UCs can be categorized into
one of three categories, depending on if they pertain to the, (i) SC of a company, (ii) the production of
company’s products, or (iii) both. Given these three categories, appropriate circularity, sustainability, and
resilience metrics are assigned to each UC category. After assigning these circularity, sustainability, and
resilience metrics to the scenarios, we assessed them to see if additional metrics would be necessary in order
to meet the desired outcomes for each UC (in addition to those described earlier at the SC and production
levels). Out of the nine UCs, we found that six of them should have extra indicators applied to them. The
following sections lay out the additional indicators to be used for each UC in addition to the circularity,
sustainability, and resilience indicators listed in the previous sections of this chapter.
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7.8.1 Airbus Atlantic User Scenarios
Two out of the four UCs generated for Airbus Atlantic (UC 2, UC 3) required additional indicators to assess key
aspects of the disruption scenario and the production and supply chain.

UC 2 for Airbus Atlantic is titled “SC Design and Support by Identification of Hidden Critical
Suppliers/Materials”. This UC involves stress testing the SC to uncover hidden critical suppliers or materials.
Along with the identified SC resilience metrics (see Section 7.6), we recommend two additional related
resilience indicators, number of critical nodes and proportion of critical nodes in a system. For these metrics,
network analysis is utilised, where a SC is modelled in graph form, with nodes being firms or suppliers, and
edges connecting these nodes represent trade agreements and the flow of materials (Demirel, 2022). In UC
2, a critical supplier is one who's failure would result in significant impacts to the functioning of the SC. Since
this user scenario uncovers previously unknown critical nodes, it is necessary to know how many of them
exist and what proportion of Airbus Atlantic’s SC is made up of them. An SC with a high number and
proportion of critical nodes is more at risk of losing performance if one of these critical nodes are disrupted.

The other Airbus Atlantic UC that required additional indicators was UC 3, “SC Design Recommendations for
Better Absorption and Swift Adaptation”. This UC concerns Airbus Atlantic’s ability to adapt to disruptions in
the SC by inventory management, supplier management, and the use of DTs. A KPI of this UC is a reduction
in development lead time. In choosing additional indicators for this case, the key was to look at the ability of
Airbus Atlantic to adapt and recover.
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Figure 29 (a) Recoverability and (b) Disruption Time adapted from Wang et al. (2022).

Figure 29 depicts the two chosen additional metrics for UC 3, recoverability and disruption time.
Recoverability is a resilience indicator which shows the ability of the system to recover from a disruption by
comparing the difference between system performance before and after a disruption and the worst
performance of the system. A recoverability of 1.0 indicates that a system can completely recover from a
disruptive event and recoverability < 1.0 indicates that a system cannot meet pre-disruption performance.
Metrics like recoverability and recovery time shed light on the recovery process a system undergoes, however,
this UC is also concerned with the ability of the system to absorb a disruption. Part of this is handled by the
robustness metric mentioned previously, however it is also important to know how long it takes the system
to begin its recovery. This is where the next metric, disruption time, comes into play. Disruption time is the
length of time between the beginning of system decline following a disturbance and the time when the
system begins to recover, as shown in Figure 29(b).



ACCURATE 81

7.8.2 Continental User Scenarios

Continental’s second UC “Production Panning Reconfiguration Under Disruption”, aims to simulate their
production lines under disruption. A key characteristic of Continental’s production line mentioned in the UC
is that the machinery they use have a high utilisation rate and are often used round the clock. For this reason,
three extra resilience metrics are suggested that can reveal particularly vulnerable steps in the production
process. These three metrics are mean time to failure (MTTF), mean time between failures (MTBF) and mean
time to repair (MTTR). These metrics are commonly used in evaluating manufacturing (Alavian et al., 2019;
Daniewski et al., 2018).

MTTF is the average life span of a machine before it breaks down. This is important information to use when
scheduling maintenance. Additionally, this time can change depending on the use of a machine, for instance,
running a machine for longer increments of time or at higher volumes can put it at risk for failing sooner.
MTBF refers to the average time a machine can be used before experiencing a failure, this can be seen as an
assessment of the reliability of a machine. Finally, MTTR refers to the average amount of time that it takes to
repair a machine (Alavian et al., 2019; Daniewski et al., 2018).

7.8.3 Tronico User Scenarios

Out of the three UCs for Tronico, additional indicators are suggested for each UC to better encompass their
goals. In Tronico’s first UC, “SC Optimisation for Inventory Replenishment Management”, the main issue is
choosing the correct time and amount to replenish parts in their inventory. Problems which arise in
replenishing stock is the unavailability of components, but on the other side, the obsolescence of components
which have stayed too long in Tronico’s inventory, whether through a component becoming unusable, the
product becoming discontinued, or a perishable item expiring. This represents a real sustainability issue,
which is why a metric termed expiration waste is recommended. Plainly put, this is a measurement of the
total mass of waste created from components and parts becoming obsolete and unusable while held in stock.
Being able to minimise this will not only have positive economic benefits, but positive environmental benefits
as well.

The second UC for Tronico is “Production Scheduling Optimisation and Shop Floor Control”. Since Tronico
makes a variety of electronic components for different machines, they require flexibility and reconfigurability
in their production. Because of the inherent flexibility needed to accommodate a variable production, three
metrics are recommended that provide insight on the ability of a manufacturing system to reconfigure its
manufacturing. The first metric is reconfiguration time; this is the time that it takes a production line to
transition from making product ‘1’ to product ‘2’. A short reconfiguration time indicates that a system can
quickly adjust to the disruption of producing a new product. The second metric is the minimum increment of
conversion. The minimum increment of conversion is the minimum number of machines that need to be
stopped in order to change from producing product ‘1’ to producing product ‘2’. The final metric is called
configuration convertibility. This metric combines the minimum increment of conversion, the number of
redundant machines and the layout of the manufacturing floor (parallel vs series configurations) in order to
assess how easily it could reconfigure itself to accommodate a disruption, either the production of a new
product, the breakdown of a machine, or other likely occurrences. Configuration convertibility is normalised
for the number of machines on a scale from 1.0 to 10.0, 1.0 being the least able to reconfigure and 10.0 being
the most flexible (Hassan et al., 2024; Maler-Speredelozzi et al., 2003).

The final Tronico UC is “Production Planning: Batch Optimisation”. This UC seeks to choose an optimal batch
size for the production of orders that Tronico has to fulfil. Currently batch sizing is manually chosen based on
previous experience. These simulations will help Tronico standardise batch sizing, avoiding decreases in
resource utilisation, production performance, and resilience. Currently, poorly sized batches can lead to
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machinery being underused or inefficiently used. In order to further investigate this, we recommend looking
at the indicator mean machine utilisation. This is the time of machine use over the total time of production,
showing how often a machine is utilised.

7.8.4 Workflow Conclusion

In conclusion, Section 7.8 recommends the use of the previous indicators in tandem with the models
mentioned in Chapter 2. The following table (Table 9) outlines how the models and data collection table can
be used to obtain these indicators. It should be noted that the usage of the recommended indicators relies
on the ability of ACCURATE pilot partners to obtain the necessary data.

Table 9: Applicability of Resilience, Sustainability, and Circularity Indicators to the ACCURATE pilot partners and
and Corresponding Data Requirements.

Indicator
Type

Resilience
Indicators

Indicator Name

Recovery Time

Indicator Requirements

Requires a performance vs time

curve, we expect to be able to get
this from the DES model.

Robustness

Requires a performance vs time
curve, we expect to be able to get
this from the DES model.

Capacity Loss

Requires a performance vs time
curve, we expect to be able to get
this from the DES model.

Time to Failure

Requires a performance vs time
curve, we expect to be able to get
this from the DES model.

Loss in
Performance

Requires a performance vs time
curve, we expect to be able to get
this from the DES model.

Rapidity in the
Recovery Phase

Requires a performance vs time
curve, we expect to be able to get
this from the DES model.

Recoverability

Requires a performance vs time
curve, we expect to be able to get
this from the DES model.

Requires a performance vs time

Disruption
Time curve, we expect to be able to get
this from the DES model.
Reconfiguration Required data on workstation
Time changeover time (hours).
Minimum .
Requires knowledge on the layout
Increment of -
. of the manufacturing floor.
Conversion
Configuration Requires knowledge on the layout

Convertibility

of the manufacturing floor.

Mean Machine
Utilisation

Requires the average workstation
utilisation rate,

Tronico Continental
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Mean Time to Requires the average time until
Failure machine fails from initial purchase.
Mean Time . . .
Requires average time until
Between . . o .
. machine fails after an initial failure.
Failures
Mean Time to Requires workstation planned
Repair maintenance (hours).
Requires combining primary and
co2eq. oM & primary ar
o secondary LCI data for estimating
Emissions .
relevant process emissions.
. Requires data on the location of
Environmental Percentage . .
o the manufacturing facility and
Sustainability Green Energy L
Indicators Usage average energy composition (by
& source) of the local electricity grid.
Requires mass of the produced
Energy .
. component and workstation energy
Intensity
use.
Supply Chain  Requires data on expired or
Waste Factor scrapped parts.
Requires data on component
Waste Factor weight and amount of scrap
produced.
Average . .
Requires component material
Recycled L
composition.
Content
Circular Percent of Requires data on the amount of
Economy Water from water required during
Indicators Circular manufacturing and the source of
Sources this water.
Required dat th t of
Percent Water quired data on the amoyn o
. waste water produced during
Discharged . .
. manufacturing and the disposal
Circular i
method for this water.
o Required data on the amount of
Expiration expired chemicals/components in
Waste . P P
inventory sent to waste.

As previously mentioned, the special nature of sLCA indicators means that stakeholder groups and indicator
categories significantly vary across the UCs. sLCA indicators are also challenging quantitatively assess based
on the planned ACCURATE DT simulation models. Consequently a categorisation of these indicators is not
presented in Table 9. Further work conduced in the ACCURATE project in WP 3 and WP 7 will consider the
qualitative social impacts, primarily focusing on enhancing the wellbeing of workers and training and
upskilling opportunities, and qualitatively assessing risks to these factors under disruptions.
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